Advertisement

Neural Processing Letters

, Volume 47, Issue 1, pp 253–276 | Cite as

Cognitive Gravity Model Based Semi-Supervised Dimension Reduction

  • Yaxin SunEmail author
  • Qing Ye
  • Rong Zhu
  • Guihua Wen
Article
  • 152 Downloads

Abstract

Dimension reduction is very important for pattern recognition. Preserving the manifold is a popular way to enhance the effect of the dimension reduction method. However, most of the manifold is designed according to the distribution of the data but not the requirement of the classifier, and then the preserved manifold structure could be not what the classifier need. In this paper, we note that the samples are often with different densities, and it is often ignored by many classifiers, such as support vector machine and k-nearest neighbors. To overcome this problem, a new manifold based on the cognitive gravity model and Laplace matrix is designed, where the weight of the similar matrix of the Laplace matrix is set by the corresponding gravity. As a result, the difference among the densities of samples can be reduced by preserving the manifold. Subsequently, a new semi-supervised dimension reduction based on the above manifold is designed. The conducted experiments validate the proposed approach in term of the performance of classification.

Keywords

Dimension reduction Cognitive gravity model Manifold learning Face recognition Speech emotion recognition 

Notes

Acknowledgements

This work was supported by China National Science Foundation under Grants 61273363, Science and Technology Planning Project of Guangdong Province under Grants 2015A020217002, and Guangzhou Science and Technology Planning Project under Grants 201604020179, Zhejiang National Science Foundation under Grants LY15F020039, Jiaxing National Science Foundation under Grants 2016AY13013.

References

  1. 1.
    Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRefGoogle Scholar
  2. 2.
    Yu K, Wang Z, Hagenbuchne M, Feng DD (2014) Spectral embedding based facial expression recognition with multiple features. Neurocomputing 129(10):136–145CrossRefGoogle Scholar
  3. 3.
    Aifanti N, Delopoulos A (2014) Linear subspaces for facial expression recognition. Signal Process Image Commun 29(1):177–188CrossRefGoogle Scholar
  4. 4.
    Yuan LUO, Wu C-M, Zhang Y (2013) Facial expression feature extraction using hybrid PCA and LBP. J China Univ Posts Telecommun 20(2):120–124CrossRefGoogle Scholar
  5. 5.
    Rahulamathavan Y, Phan RCW, Chambers JA, Parish DJ (2013) Facial expression recognition in the encrypted domain based on local fisher discriminant. IEEE Trans Affect Comput 4(1):83–92CrossRefGoogle Scholar
  6. 6.
    Tu Y-H, Hsu C-T (2012) Dual subspace nonnegative matrix factorization for person-invariant facial expression recognition. In: Proceedings of the International Conference on Pattern Recognition (ICPR). pp 2391–2394Google Scholar
  7. 7.
    Guo G, Guo R, Li X (2013) Facial expression recognition influenced by human aging. IEEE Trans Affect Comput 4(3):291–298CrossRefGoogle Scholar
  8. 8.
    Yun W-H, Kim D, Park C, Kim J (2013) Multi-view facial expression recognition using parametric kernel eigenspace method based on class features. In: Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC). pp 2689–2693Google Scholar
  9. 9.
    Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670MathSciNetCrossRefGoogle Scholar
  10. 10.
    Najafi A, Joudaki A, Fatemizadeh E (2016) Nonlinear dimensionality reduction via path-based isometric mapping. IEEE Trans Pattern Anal Mach Intell 38(7):1452–1464CrossRefGoogle Scholar
  11. 11.
    Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hong C, Yu J, You J, Chen X, Tao D (2015) Multimodal deep autoencoder for human pose recovery. Inf Sci 320:395–405CrossRefGoogle Scholar
  13. 13.
    Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751Google Scholar
  14. 14.
    Sanguinetti G (2008) Dimensionality reduction of clustered data sets. IEEE Trans Pattern Anal Mach Intell 30(3):535–540CrossRefGoogle Scholar
  15. 15.
    Yu J, Yang X, Gao F, Tao D (2016) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 99:1–17Google Scholar
  16. 16.
    Dornaika F, Traboulsi YE (2017) Matrix exponential based semi-supervised discriminant embedding for image classification. Pattern Recognit 61:92–103CrossRefGoogle Scholar
  17. 17.
    Luo T, Hou C, Yi D, Zhang J (2016) Discriminative orthogonal elastic preserving projections for classification. Neurocomputing 179(29):54–68CrossRefGoogle Scholar
  18. 18.
    Wei J, Zeng Q-F, Wang X, Wang J-B, Wen G-H (2014) Integrating local and global topological structures for semi-supervised dimensionality reduction. Soft Comput 18(6):1189–1198CrossRefGoogle Scholar
  19. 19.
    Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723–742CrossRefGoogle Scholar
  20. 20.
    Nie F, Xu D, Tsang IW, Zhang CS (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimensionality reduction. IEEE Trans Image Process 19(7):1921–1932MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dornaika F, El Traboulsi Y (2016) Learning flexible graph-based semi-supervised embedding. IEEE Trans Cybern 46(1):206–217CrossRefGoogle Scholar
  22. 22.
    Juefei-Xu F, Savvides M (2016) Multi-class Fukunaga Koontz discriminant analysis for enhanced face recognition. Pattern Recognit 52:186–206CrossRefGoogle Scholar
  23. 23.
    Wang S, Lu J, Gu X, Du H, Yang J (2016) Semi-supervised linear discriminant analysis for dimensionality reduction and classification. Pattern Recognit 57:179–189CrossRefGoogle Scholar
  24. 24.
    Jiang J, Hu R, Wang Z, Cai Z (2016) CDMMA: Coupled discriminant multi-manifold analysis for matching low-resolution face images. Signal Process 124:162–172CrossRefGoogle Scholar
  25. 25.
    Dhamecha TI, Singh R, Vatsa M (2016) On incremental semi-supervised discriminant analysis. Pattern Recognit 52:135–147CrossRefGoogle Scholar
  26. 26.
    Lu G-F, Zou J, Wang Y (2016) L1-norm and maximum margin criterion based discriminant locality preserving projections via trace Lasso. Pattern Recognit 55:135–147CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Zhang Y, Li F, Zhao M, Zhang L, Yan S (2017) Discriminativesparse flexibl emanifold embedding with novel graph for robust visual representation and label propagation. Pattern Recognit 55:135–147Google Scholar
  28. 28.
    Chen P, Jiao L, Liu F, Zhao J, Zhao Z, Liu S (2017) Semi-supervised double sparse graphs based discriminant analysis for dimensionality reduction. Pattern Recognit 61:361–378CrossRefGoogle Scholar
  29. 29.
    Huang K-K, Dai D-Q, Ren C-X (2017) Regularized coplanar discriminant analysis for dimensionality reduction. Pattern Recognit 62:87–98CrossRefGoogle Scholar
  30. 30.
    Zhou Y, Sun S (2016) Manifold partition discriminant analysis. IEEE Trans Cybern 47(4):830–840Google Scholar
  31. 31.
    Zhou Y, Sun S (2016) Local tangent space discriminant analysis. Neural Process Lett 43(3):87–98Google Scholar
  32. 32.
    Wang G, Shi N, Shu Y, Liu D (2016) Embedded manifold-based kernel fisher discriminant analysis for face recognition. Neural Process Lett 43(1):1–15CrossRefGoogle Scholar
  33. 33.
    Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: International conference on computer visionGoogle Scholar
  34. 34.
    Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016CrossRefGoogle Scholar
  35. 35.
    Yu J, Rui Y, Chen B (2014) Exploiting click constraints and multi-view features for image re-ranking. IEEE Trans Multimed 16(1):159–168CrossRefGoogle Scholar
  36. 36.
    Sun Y, Wen G (2015) Adaptive feature transformation for classification with sparse representation. Optik Int J Light Electron Opt 126(23):4452–4459CrossRefGoogle Scholar
  37. 37.
    Wright J, Yang AY, Ganesh A, Shankar SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRefGoogle Scholar
  38. 38.
    Wen G, Wei J, Wang J, Zhou T, Chen L (2013) Cognitive gravitation model for classification on small noisy data. Neurocomputing 118(22):245–252CrossRefGoogle Scholar
  39. 39.
    Sun Y, Wen G (2016) Cognitive gravitation model-based relative transformation for classification. In press, Soft ComputGoogle Scholar
  40. 40.
    Chang C-C, Lin C-J (2011) LIBSVM-a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27CrossRefGoogle Scholar
  41. 41.
    Liao Y, Vemuri VR (2002) Use of \(k\)-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439–448CrossRefGoogle Scholar
  42. 42.
    Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Proceedings of the IEEE international conference on automatic face and gesture recognition (AFGR), Washington. pp 46–51Google Scholar
  43. 43.
    Samaria FS, Harter AC (1994) Parameterization of a stochastic model for human. In: Proceedings of the IEEE workshop on applications of computer vision (ACV). Sarasota, pp 138–142Google Scholar
  44. 44.
  45. 45.
    Georghiades AS, Belhumeur PN, Kriegman DJ (2016) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRefGoogle Scholar
  46. 46.
    Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B (2005) A database of German emotional speech. In: INTERSPEECH. Lisbon, pp 1517–1520Google Scholar
  47. 47.
    Haq S, Jackson PJB (2009) Speaker-dependent audio-visual emotion recognition. In: AVSP. pp 53–58Google Scholar
  48. 48.
    The selected Speech Emotion Database of Institute of Automation Chinese Academy of Sciences (CASIA). http://www.datatang.com/data/39277
  49. 49.
    Schuller B, Steidl S, Batliner A (2010) The INTERSPEECH 2010 paralinguistic challenge. In: INTERSPEECH. pp 2794–2797Google Scholar
  50. 50.
    Ntalampiras S, Fakotakis N (2012) Modeling the temporal evolution of acoustic parameters for speech emotion recognition. IEEE Trans Affect Comput 3(1):116–125CrossRefGoogle Scholar
  51. 51.
    Hassan A, Damper RI (2012) Classification of emotional speech using 3DEC hierarchical classifier. Speech Commun 54(7):903–916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Jiaxing UniversityJiaxingChina
  2. 2.South China University of TechnologyGuangzhouChina

Personalised recommendations