Advertisement

Neural Processing Letters

, Volume 47, Issue 3, pp 1041–1054 | Cite as

Random Pattern and Frequency Generation Using a Photonic Reservoir Computer with Output Feedback

  • Piotr Antonik
  • Michiel Hermans
  • Marc Haelterman
  • Serge Massar
Article
  • 199 Downloads

Abstract

Reservoir computing is a bio-inspired computing paradigm for processing time dependent signals. The performance of its analogue implementations matches other digital algorithms on a series of benchmark tasks. Their potential can be further increased by feeding the output signal back into the reservoir, which would allow to apply the algorithm to time series generation. This requires, in principle, implementing a sufficiently fast readout layer for real-time output computation. Here we achieve this with a digital output layer driven by a FPGA chip. We demonstrate the first opto-electronic reservoir computer with output feedback and test it on two examples of time series generation tasks: frequency and random pattern generation. We obtain very good results on the first task, similar to idealised numerical simulations. The performance on the second one, however, suffers from the experimental noise. We illustrate this point with a detailed investigation of the consequences of noise on the performance of a physical reservoir computer with output feedback. Our work thus opens new possible applications for analogue reservoir computing and brings new insights on the impact of noise on the output feedback.

Keywords

Reservoir computing Opto-electronic setup Time series generation FPGA Output feedback 

Notes

Funding

This study was funded by the Interuniversity Attraction Poles program of the Belgian Science Policy Office (Grant IAP P7-35 “photonics@be”), by the Fonds de la Recherche Scientifique FRS-FNRS and by the Action de Recherche Concertée of the Académie Universitaire Wallonie-Bruxelles (Grant AUWB-2012-12/17-ULB9).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Standard

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    The 2006/07 forecasting competition for neural networks & computational intelligence. http://www.neural-forecasting-competition.com/NN3/ (2006)
  2. 2.
    Aldridge I (2009) High-frequency trading: a practical guide to algorithmic strategies and trading systems. Wiley, HobokenGoogle Scholar
  3. 3.
    Antonik P, Duport F, Hermans M, Smerieri A, Haelterman M, Massar S (2016) Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans Neural Netw Learn Syst PP(99):1–13Google Scholar
  4. 4.
    Antonik P, Haelterman M, Massar S (2017) Online training for high-performance analogue readout layers in photonic reservoir computers. Cognit Comput. doi: 10.1007/s12559-017-9459-3
  5. 5.
    Antonik P, Hermans M, Duport F, Haelterman M, Massar S (2016) Towards pattern generation and chaotic series prediction with photonic reservoir computers. In: SPIE’s 2016 Laser Technology and Industrial Laser Conference, vol. 9732, p 97320BGoogle Scholar
  6. 6.
    Antonik P, Hermans M, Haelterman M, Massar S (2016) Pattern and frequency generation using an opto-electronic reservoir computer with output feedback. In: APNNS’s 23th international conference on neural information processing, LNCS, vol. 9948, pp 318–325Google Scholar
  7. 7.
    Antonik P, Hermans M, Haelterman M, Massar S (2016) Towards adjustable signal generation with photonic reservoir computers. In: 25th international conference on artificial neural networks, vol. 9886Google Scholar
  8. 8.
    Appeltant L, Soriano MC, Van der Sande G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso CR, Fischer I (2011) Information processing using a single dynamical node as complex system. Nat. Commun. 2:468CrossRefGoogle Scholar
  9. 9.
    Arsenault H (2012) Optical processing and computing. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Brunner D, Soriano MC, Mirasso CR, Fischer I (2012) Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4:1364CrossRefGoogle Scholar
  11. 11.
    Caluwaerts K, D’Haene M, Verstraeten D, Schrauwen B (2013) Locomotion without a brain: Physical reservoir computing in tensegrity structures. Artif Life 19(1):35–66CrossRefGoogle Scholar
  12. 12.
    Duport F, Schneider B, Smerieri A, Haelterman M, Massar S (2012) All-optical reservoir computing. Opt Express 20:22783–22795CrossRefGoogle Scholar
  13. 13.
    Duport F, Smerieri A, Akrout A, Haelterman M, Massar S (2016) Fully analogue photonic reservoir computer. Sci Rep 6:22381CrossRefGoogle Scholar
  14. 14.
    Jaeger H (2001) Short term memory in echo state networks. Technical GMD Report, vol 152Google Scholar
  15. 15.
    Jaeger H (2007) Echo state network. Scholarpedia 2(9):2330CrossRefGoogle Scholar
  16. 16.
    Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304:78–80CrossRefGoogle Scholar
  17. 17.
    Larger L, Soriano M, Brunner D, Appeltant L, Gutiérrez JM, Pesquera L, Mirasso CR, Fischer I (2012) Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express 20:3241–3249CrossRefGoogle Scholar
  18. 18.
    Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comp Sci Rev 3:127–149CrossRefzbMATHGoogle Scholar
  19. 19.
    Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14:2531–2560CrossRefzbMATHGoogle Scholar
  20. 20.
    Martinenghi R, Rybalko S, Jacquot M, Chembo YK, Larger L (2012) Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys Rev Lett 108:244101CrossRefGoogle Scholar
  21. 21.
    Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, Massar S (2012) Optoelectronic reservoir computing. Sci Rep 2:287CrossRefGoogle Scholar
  22. 22.
    Reinhart RF, Steil JJ (2012) Regularization and stability in reservoir networks with output feedback. Neurocomputing 90:96–105CrossRefGoogle Scholar
  23. 23.
    Rodan A, Tino P (2011) Minimum complexity echo state network. IEEE Trans Neural Netw 22:131–144CrossRefGoogle Scholar
  24. 24.
    Smerieri A, Duport F, Paquot Y, Schrauwen B, Haelterman M, Massar S (2012) Analog readout for optical reservoir computers. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25 (NIPS2012). Curran Associates, Inc., pp 944–952. https://papers.nips.cc/paper/4718-analog-readout-for-optical-reservoir-computers.pdf
  25. 25.
    Sussillo D, Abbott L (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544–557CrossRefGoogle Scholar
  26. 26.
    Tikhonov AN, Goncharsky A, Stepanov V, Yagola AG (1995) Numerical methods for the solution of ill-posed problems, vol 328. Springer, BerlinCrossRefzbMATHGoogle Scholar
  27. 27.
    Triefenbach F, Jalalvand A, Schrauwen B, Martens JP (2010) Phoneme recognition with large hierarchical reservoirs. Adv Neural Inf Process Syst 23:2307–2315Google Scholar
  28. 28.
    Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Verstraeten D, Schrauwen B, Dambre J, Bienstman P (2014) Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 5:3541CrossRefGoogle Scholar
  29. 29.
    Vinckier Q, Bouwens A, Haelterman M, Massar S (2016) Autonomous all-photonic processor based on reservoir computing paradigm. p SF1F.1. Optical Society of AmericaGoogle Scholar
  30. 30.
    Vinckier Q, Duport F, Smerieri A, Vandoorne K, Bienstman P, Haelterman M, Massar S (2015) High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2(5):438–446CrossRefGoogle Scholar
  31. 31.
    Wyffels F, Li J, Waegeman T, Schrauwen B, Jaeger H (2014) Frequency modulation of large oscillatory neural networks. Biol Cybern 108(2):145–157MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wyffels F, Schrauwen B, Stroobandt D (2008) Stable output feedback in reservoir computing using ridge regression. In: International conference on artificial neural networks, pp 808–817. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratoire d’Information QuantiqueCP 224, Université libre de BruxellesBrusselsBelgium
  2. 2.Service OPERA-PhotoniqueCP 194/5, Université libre de BruxellesBrusselsBelgium

Personalised recommendations