Neural Processing Letters

, Volume 44, Issue 3, pp 593–601 | Cite as

A New Geometry with Cross-Coupling of ART Networks

  • B. Lungsi Sharma


This paper demonstrates a new geometrical arrangement of adaptive resonance theory based network. Using method of minimal anatomies a neural network was constructed in an attempt to compare patterns. The anatomy incorporates two sub-networks coupled by feedback signals and an additional motor layer whose outputs reflect relationship or non-relationship among the compared patterns. Simulation results illustrates the network behaviors as emergent properties. The network with unsupervised learning is capable of generating self-defining features.


Adaptive resonance theory Embedding field theory Minimal method anatomy Unsupervised learning Self-defining feature set Set-membership theory 



This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The author is indebted to Dr. Richard B. Wells, emeritus professor at the University of Idaho, for valuable suggestions concerning the direction of this research. He would also like to thank Dr. Terence Soule, Dr. Eric Wolbrecht and Dr. Onesmo B. Balemba, all of University of Idaho, for helpful encouragement and criticisms.


  1. 1.
    Grossberg S (1976) Adaptive pattern classification and universal recoding II: feedback, expectations, olfaction, illusions. Biol Cybern 23:187–202. doi: 10.1007/BF00340335 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Grossberg S (1969) Some networks that can learn, remember, and reproduce any number of complicated space-time patterns. J Math Mech 19:53–91. doi: 10.1512/iumj.1970.19.19007 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Grossberg S (1969) Embedding fields: a theory of learning with physiological implications. J Math Psychol 6:209–239. doi: 10.1016/0022-2496(69)90003-0 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grossberg S (1971) Embedding fields: underlying philosophy, mathematics, and applications to psychology, physiology, and anatomy. J Cybern 1:28–50. doi: 10.1080/01969727108545828 CrossRefGoogle Scholar
  5. 5.
    Grossberg S (1973) Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud Appl Math 52(1):213–257MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grossberg S (1976) Adaptive pattern classification and universal recoding I: parallel development and coding of neural feature detectors. Biol Cybern 23:121–134. doi: 10.1007/bf00344744 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Grossberg S (2013) Adaptive resonance theory. Scholarpedia [Online] 8(5):1569. doi: 10.4249/scholarpedia.1569 CrossRefGoogle Scholar
  8. 8.
    Grossberg S, Repin DV (2003) A neural model of how the brain represents and compared multidigit numbers: spatial and categorical processes. Neural Netw 16:1107–1140. doi: 10.1016/s0893-6080(03)00193-x CrossRefGoogle Scholar
  9. 9.
    Grossberg S (2013) Recurrent neural networks. Scholarpedia [Online] 8(2):1888. doi: 10.4249/scholarpedia.1888 CrossRefGoogle Scholar
  10. 10.
    Carpenter GA, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vis Graphics Image Process 37:54–115. doi: 10.1016/s0734-189x(87)80014-2 CrossRefzbMATHGoogle Scholar
  11. 11.
    Carpenter GA, Grossberg S (1987) ART2: self-organization of stable category recognition codes for analog input patterns. Appl Opt 26:4919–4930. doi: 10.1364/ao.26.004919 CrossRefGoogle Scholar
  12. 12.
    Gardner EP, Martin JH (2000) Coding of sensory information. In: Kandel Eric R, Schwartz James H, Jessell Thomas M (eds) Principles of neural science, vol 4. McGraw-Hill, New York, pp 411–429Google Scholar
  13. 13.
    Zadeh LA (1963) On the definition of adaptivity. Proc IEEE 51(3):469–470. doi: 10.1109/proc.1963.1852 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Combettes PL (1993) The foundations of set theoretic estimation. Proc IEEE 81(2):182–208. doi: 10.1109/5.214546 CrossRefGoogle Scholar
  15. 15.
    Grossberg S (1982) Classical and instrumental learning by neural networks. In: Cohen RS, Wartofsky MW (eds) Studies in mind and brain: neural principles of learning, perception, development, cognition, and motor control. D. Reidel Publishing Company, Dordrecht, pp 65–156. doi: 10.1007/978-94-009-7758-73 CrossRefGoogle Scholar
  16. 16.
    Piaget J (1952) The origins of intelligence in children. International Universities Press, Inc., New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Wells Laboratory of Computational Neuroscience (Asian Division)ImphalIndia

Personalised recommendations