Neural Processing Letters

, Volume 43, Issue 2, pp 537–551 | Cite as

Neural Mechanism of Corticofugal Modulation of Tuning Property in Frequency Domain of Bat’s Auditory System

  • Kazuhisa Fujita
  • Yoshiki Kashimori


It is quite important for sensory processing to understand how feedback modulates the information processing in early brain areas in order to extract behaviorally-relevant features of stimulus. The auditory system of bats provides an ideal system for clarifying the mechanism of the adaptive processing by feedback. To investigate this mechanism, we developed a neural network model of bat’s auditory system for detecting Doppler-shifted frequency of sound echoes. Using the model, we demonstrate the receptive field modulation of cortical neurons and the modulation of the feedback to IC neurons, evoked by an electric stimulation and a GABA antagonist. Our model reproduces qualitatively the experimental results of best frequency (BF) shifts by Xiao and Suga (Proc Natl Acad Sci USA 99(24):15743–15748, 2002). We also show how the modulations cause the BF shifts of cortical and subcortical neurons. Furthermore we investigate the neuronal characteristics required for enhancing BF shifts.


Neural model Feedback Auditory system Bat  Best frequency shift 


  1. 1.
    Anderson JS, Carandini M, Ferster DSJ, Car M, Orientation DF (2000) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84:909–926Google Scholar
  2. 2.
    Ashida G, Carr CE (2011) Sound localization: Jeffress and beyond. Curr Opin Neurobiol 21(5):745–751CrossRefGoogle Scholar
  3. 3.
    Bishop AL, Henson OW (1987) The efferent cochlear projections of the superior olivary complex in the mustached bat. Hear Res 31:175–182CrossRefGoogle Scholar
  4. 4.
    Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186CrossRefGoogle Scholar
  5. 5.
    Calford M (2002) Dynamic representational plasticity in sensory cortex. Neuroscience 111:709–738CrossRefGoogle Scholar
  6. 6.
    Dayan P, Abbott LF (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Feliciano M, Saldaña E, Mugnaini E (1995) Direct projections from the rat primary auditory neocortex to nucleus sagulum, paralemniscal regions, superior olivary complex and cochlear nuclei. Auditory Neurosci 1:287–308Google Scholar
  8. 8.
    Gaioni S, Riquimaroux HNS (1990) Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. J Neurophysiol 64:1801–1817Google Scholar
  9. 9.
    Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci U S A 95(21):12663–12670CrossRefGoogle Scholar
  10. 10.
    Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci U S A 97:8081–8086CrossRefGoogle Scholar
  11. 11.
    Goldman LJ, Henson OW Jr (1977) Prey recognition and selection by the constant frequency bat, pteronotus p. parnellii. Behav Ecol Sociobiol 2:411–419CrossRefGoogle Scholar
  12. 12.
    Guillery R, Sherman S (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 17:163–175CrossRefGoogle Scholar
  13. 13.
    Guillery RW (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96:1–38CrossRefGoogle Scholar
  14. 14.
    Henson OW Jr, Henson MM, Kobler JB, Pollak GD (1980) The constant frequency component of the biosonar signals of the bat pteronotus parnellii parnellii. In: Busnel RG, Fish J (eds) Animal sonar systems. Plenum, New York, pp 913–916CrossRefGoogle Scholar
  15. 15.
    Huffman R, Henson OJ (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Brain Res Rev 15:295–323CrossRefGoogle Scholar
  16. 16.
    Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572CrossRefGoogle Scholar
  17. 17.
    Kaas J (1991) Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci 14:137–167CrossRefGoogle Scholar
  18. 18.
    Kashimori Y, Inoue S, Kambara T (2001) A neural mechanism of hyperaccurate detection of phase advance and delay in the jamming avoidance response of weakly electric fish. Biol Cybern 85:117–131CrossRefGoogle Scholar
  19. 19.
    Kelly JP, Wong D (1981) Laminar connections of the cat’s auditory cortex. Brain Res 212:1–15CrossRefGoogle Scholar
  20. 20.
    Kisvárday ZF, Beaulieu C, Eysel U (1993) Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J Comp Neurol 327:398–415CrossRefGoogle Scholar
  21. 21.
    Kleinfeld D, Berg RW, O’Connor SM (1999) Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res 16:69–88CrossRefGoogle Scholar
  22. 22.
    Knudsen E, du Lac S, Esterly S (1987) Computational maps in the brain. Annu Rev Neurosci 10:41–65CrossRefGoogle Scholar
  23. 23.
    Liu BH, Wu GK, Arbuckle R, Tao HW, Zhang LI (2007) Defining cortical frequency tuning with recurrent excitatory circuitry. Nat Neurosci 10:1594–1600CrossRefGoogle Scholar
  24. 24.
    Liu XB, Honda CN, Jones EG (1995) Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J Comp Neurol 352:69–91CrossRefGoogle Scholar
  25. 25.
    Markram H, Toled-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807CrossRefGoogle Scholar
  26. 26.
    Nicolelis MAL, Fanselow EE (2002a) Dynamic shifting in thalamocortical processing during different behavioural states. Philos Trans R Soc Lond B Biol Sci 357:1753–1758CrossRefGoogle Scholar
  27. 27.
    Nicolelis MAL, Fanselow EE (2002b) Thalamocortical [correction of thalamcortical] optimization of tactile processing according to behavioral state. Nat Neurosci 5:517–523CrossRefGoogle Scholar
  28. 28.
    Rumelhart D, McClelland J (1986) Parallel distributed processing. MIT Press, CambridgeGoogle Scholar
  29. 29.
    Saldaña E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–40CrossRefGoogle Scholar
  30. 30.
    Schnitzler H (1970) Echoortung bei der fledermacus chilonycteris rubiginosa. Z Verg Physiol 68:25–38CrossRefGoogle Scholar
  31. 31.
    Sherman S, Guillery R (1996) Functional organization of thalamocortical relays. J Neurophysiol 37:1367–1395Google Scholar
  32. 32.
    Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc B 357:1695–1708CrossRefGoogle Scholar
  33. 33.
    Sillito AM, Cudeiro J, Jones HE (2006) Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29:307–316CrossRefGoogle Scholar
  34. 34.
    Steriade M, Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37:563–576CrossRefGoogle Scholar
  35. 35.
    Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 315–373Google Scholar
  36. 36.
    Suga N (1990) Biosonar and neural computation in bats. Sci Am 262:60–68CrossRefGoogle Scholar
  37. 37.
    Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4:783–794CrossRefGoogle Scholar
  38. 38.
    Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7:487–492CrossRefGoogle Scholar
  39. 39.
    Vogels TP, Abbott LF (2009) Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat Neurosci 12:483–491CrossRefGoogle Scholar
  40. 40.
    Xiao Z, Suga N (2002) Reorganization of the cochleotopic map in the bat’s auditory system by inhibition. Proc Natl Acad Sci USA 99(24):15743–15748CrossRefGoogle Scholar
  41. 41.
    Yan J, Suga N (1996) Corticofugal modulation of time-domain processing of biosonar information in bats. Science 273(5278):1100–1103CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Suga N, Yan J (1997) Corticofugal modulation of frequency processing in bat auditory system. Nature 387:900–903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Tsuyama National College of TechnologyTsuyamaJapan
  2. 2.Department of Engineering ScienceUniversity of Electro-CommunicationsChofuJapan
  3. 3.Graduate School of Information SystemsUniversity of Electro-CommunicationsChofuJapan

Personalised recommendations