Advertisement

Neural Processing Letters

, Volume 39, Issue 3, pp 285–296 | Cite as

A Neuron Model Including Gene Expression: Bistability, Long-Term Memory, etc.

  • Vladimir P. ZhdanovEmail author
Article

Abstract

Acquisition, consolidation and reconsolidation of long-term memories include changes in gene expression in neurons. The understanding of the corresponding mechanistic details is still far from complete even on the conceptual level. Here, the author proposes a generic kinetic model describing a global interplay between the function of membrane ion channels and gene expression, including gene transcription into mRNA and mRNA translation into protein. The model, based partly on the Hindmarsh–Rose neuron model for membrane voltage, implies feedbacks between these processes. Specifically, the gene transcription is considered to depend on membrane voltage due to the corresponding dependence of one of the transcription factors. The number or efficiency of function of ion channels is in turn assumed to depend on the protein population. With these feedbacks, the model predicts either a single steady state or bistability. The bistable regimes are briefly discussed in the context of long-term memory.

Keywords

Theoretical neuroscience Membrane-potential spikes Subcellular processes Mean-field kinetic equations 

References

  1. 1.
    Amari S-I (2013) Dreaming of mathematical neuroscience for half a century. Neural Netw 37:48–51CrossRefzbMATHGoogle Scholar
  2. 2.
    Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26CrossRefGoogle Scholar
  3. 3.
    McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251CrossRefGoogle Scholar
  4. 4.
    Palm G (2013) Neural associative memories and sparse coding. Neural Netw 37:165–171CrossRefGoogle Scholar
  5. 5.
    Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839CrossRefGoogle Scholar
  6. 6.
    Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164CrossRefGoogle Scholar
  7. 7.
    Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 1:1569–1572CrossRefGoogle Scholar
  8. 8.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544Google Scholar
  9. 9.
    Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosc 12:105–118CrossRefGoogle Scholar
  10. 10.
    McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosc 12:415–425CrossRefGoogle Scholar
  11. 11.
    Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138CrossRefGoogle Scholar
  12. 12.
    Choi JH, Kim JH, Heo R, Lee KJ (2012) Modulating the precision of recurrent bursts in cultured neural networks. Phys Rev Lett 108:138103CrossRefGoogle Scholar
  13. 13.
    Friedman N, Ito S, Brinkman BAW, Shimono M, DeVille REL, Dahmen KA, Beggs JM, Butler TC (2012) Universal critical dynamics in high resolution neuronal avalanche data. Phys Rev Lett 108:208102CrossRefGoogle Scholar
  14. 14.
    Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L (2012) Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. Phys Rev Lett 108:228703CrossRefGoogle Scholar
  15. 15.
    Mathis A, Herz AVM, Stemmler MB (2012) Resolution of nested neuronal representations can be exponential in the number of neurons. Phys Rev Lett 108:018103CrossRefGoogle Scholar
  16. 16.
    Vasilkov VA, Tikidji-Hamburyan RA (2012) Accurate detection of interaural time differences by a population of slowly integrating neurons. Phys Rev Lett 108:138104CrossRefGoogle Scholar
  17. 17.
    Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558CrossRefMathSciNetGoogle Scholar
  18. 18.
    Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Rasmussen D (2012) A Large-Scale Model of the Functioning Brain. Science 338:1202–1205CrossRefGoogle Scholar
  19. 19.
    Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038CrossRefGoogle Scholar
  20. 20.
    Lamprecht R, LeDoux J (2004) Structure plasticity and memory. Nat Rev Neurosc 5:45–54CrossRefGoogle Scholar
  21. 21.
    Anokhin KV (2010) The brain and memory: the biology of traces of time past. Her Russ Acad Sci 80:455–461CrossRefGoogle Scholar
  22. 22.
    Cajal SR (1894) La fine structure des centres nerveux. The Croonian lecture. Proc Royal Soc Lond 55:444–468CrossRefGoogle Scholar
  23. 23.
    Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  24. 24.
    Stahnisch FW, Nitsch R (2002) Santiago Ramón y Cajal’s concept of neuronal plasticity: the ambiguity lives on. Trends Neurosci 25:589–591CrossRefGoogle Scholar
  25. 25.
    Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556–571CrossRefGoogle Scholar
  26. 26.
    Barbado M, Fablet K, Ronjat M, De Waard M (2009) Gene regulation by voltage-dependent calcium channels. Biochimica et Biophys Acta 1793:1096–1104CrossRefGoogle Scholar
  27. 27.
    Loebrich S, Nedevi E (2009) The function of activity-regulated genes in the nervous system. Physiol Rev 89:1079–1103CrossRefGoogle Scholar
  28. 28.
    Sacktor TC (2011) How does PKM\(\zeta \) maintain long-term memory? Nat Rev Neurosci 12:9–15CrossRefGoogle Scholar
  29. 29.
    Konopka W, Schütz G, Kaczmarek L (2011) The nicroRNA contribution to learning and memory. Neuroscientist 17:468–474CrossRefGoogle Scholar
  30. 30.
    Olde Loohuis NFM, Kos A, Martens GJM, Van Bokhoven H, Nadif Kasri N, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102CrossRefGoogle Scholar
  31. 31.
    Fioravante D, Byrne JH (2011) Protein degradation and memory formation. Brain Res Bull 85:14–20CrossRefGoogle Scholar
  32. 32.
    Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33:1734–1740CrossRefGoogle Scholar
  33. 33.
    Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci Suppl 3:1178–1183CrossRefGoogle Scholar
  34. 34.
    Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike timing. Biol Cybern 98:459–478CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Cooper LN, Bear MF (2012) The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 13:799–810CrossRefGoogle Scholar
  36. 36.
    Kasabov N, Schliebs S, Mohemmed A (2012) Modelling the effect of genes on the dynamics of probabilistic spiking neural networks for computational neurogenetic modelling. Lect Notes Comput Sci 7548:1–9CrossRefGoogle Scholar
  37. 37.
    Zhdanov VP (2013) Three generic bistable scenarios of the interplay of voltage pulses and gene expression in neurons. Neural Netw 44:51–63CrossRefGoogle Scholar
  38. 38.
    Hindmarsh JL, Rose R (1984) A model of neuronal bursting using three coupled first order differential equations. Proc Royal Soc Lond Ser B Biol Sci 221:87–102CrossRefGoogle Scholar
  39. 39.
    Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464CrossRefGoogle Scholar
  40. 40.
    Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461CrossRefGoogle Scholar
  41. 41.
    Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9:771–780CrossRefGoogle Scholar
  42. 42.
    Zhdanov VP (2011) Kinetic models of gene expression including non-coding RNAs. Phys Rep 500:1–42CrossRefGoogle Scholar
  43. 43.
    Graupner M, Brunel N (2010) Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers Comput Neurosci 4:1–19Google Scholar
  44. 44.
    Fall CP, Lewis TJ, Rinzel J (2005) Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability. Biol Cybern 93:109–118CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Ogasawara H, Kawato M (2010) The protein kinase M\(\zeta \) network as a bistable switch to store neuronal memory. BMC Syst Biol 4:181CrossRefGoogle Scholar
  46. 46.
    Mongillo G, Hansel D, van Vreeswijk C (2012) Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission. Phys Rev Lett 108:158101CrossRefGoogle Scholar
  47. 47.
    Nido GS, Williams JM, Benuskova L, (2012) Bistable properties of a memoryrelated gene regulatory network. Proc. IJCNN, (2012) WCCI 2012 IEEE world congress on computational intelligence. Art., No. 6252588Google Scholar
  48. 48.
    Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea C, Pilpel Y, Barkai N (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38:636–643CrossRefGoogle Scholar
  49. 49.
    Zhdanov VP (2012) Neural networks including microRNAs. Neural Netw 25:200–204CrossRefGoogle Scholar
  50. 50.
    Adhikari BM, Prasad A, Dhamala M (2011) Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Chaos 21:023116CrossRefMathSciNetGoogle Scholar
  51. 51.
    Belykh I, de Lange E, Hasler M (2005) Synchronization of bursting neurons: what matters in the network topology. Phys Rev Lett 94:188101CrossRefGoogle Scholar
  52. 52.
    Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 333:1244–1248Google Scholar
  53. 53.
    Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333:1244–1248CrossRefGoogle Scholar
  54. 54.
    Drengstig T, Ni XY, Thorsen K, Jolma IW, Ruoff P (2012) Robust adaptation and homeostasis by autocatalysis. J Phys Chem B 116:5355–5363CrossRefGoogle Scholar
  55. 55.
    Afroz T, Beisel CL (2013) Understanding and exploiting feedback in synthetic biology. Chem Eng Sci. doi: 10.1016/j.ces.2013.02.017i

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Section of Biological Physics, Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Boreskov Institute of CatalysisRussian Academy of SciencesNovosibirskRussia

Personalised recommendations