Advertisement

Neural Processing Letters

, Volume 31, Issue 1, pp 65–91 | Cite as

Global Exponential Stability for Impulsive BAM Neural Networks with Distributed Delays on Time Scales

  • Yongkun LiEmail author
  • Shan Gao
Article

Abstract

In this paper, by utilizing the time scale calculus theory, topological degree theory and Hölder’s inequality on time scales, we analyze a class of impulsive BAM neural networks with distributed delays on time scales. Some sufficient conditions are obtained to ensure the existence, uniqueness and the global exponential stability of the equilibrium point. Finally, an example is provided to demonstrate the effectiveness of the results.

Keywords

Global exponential stability BAM neural network Impulsive Distributed delays Time scale Topological degree theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hopfield J (1984) Neurons with graded response have collective computational properties like those of two state neurons. Proc Natl Acad Sci 81: 3088–3092CrossRefGoogle Scholar
  2. 2.
    Zhang Q (2006) Stability condition for impulsive hopfield neural networks with time delay, dynamics of continuous. Discrete Impulsive Syst Ser A Math Anal Part 1 Suppl S 13: 35–38Google Scholar
  3. 3.
    Zhang Q, Zhou C (2006) Dynamics of hopfield neural networks with continuously distributed delays, dynamics of continuous. Discrete Impulsive Syst Ser A Math Anal Part 2 Suppl S 13: 541–544zbMATHGoogle Scholar
  4. 4.
    Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26: 4947–4960CrossRefGoogle Scholar
  5. 5.
    Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybern 18: 49–60CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cao J (2003) Global asymptotive stability of delayed bidirectional associative memory networks. Appl Math Comput 142: 333–339zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cao J, Dong M (2003) Exponential stability of delayed bidirectional associative memory neural networks. Appl Math Comput 135: 105–112zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cao J, Yang Y (2001) Global stability analysis of bidirectional associative memory neural networks with time delay. Int J Circ Theoret Appl 29: 185–196CrossRefGoogle Scholar
  9. 9.
    Li Y (2005) Global exponential stability of BAM neural networks with delays and impulses. Chaos Solitons Fractals 24: 279–285zbMATHMathSciNetGoogle Scholar
  10. 10.
    Li Y (2004) Existence and stability of periodic solution for BAM neural networks with distributed delays. Appl Math Comput 159: 847–862zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Li C, Liao X, Zhang R (2005) Delay-dependent exponential stability analysis of bidirectional associative memory neural networks with time delay: an LMI approach. Chaos Solitons Fractals 24: 1119–1134zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Zhao H (2002) Global stability of bidirectional associative memory neural networks with distributed delays. Phys Lett A 297: 182–190Google Scholar
  13. 13.
    Arik S, Tavsanoglu V (2005) Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays. Neurocomputing 68: 161–176CrossRefGoogle Scholar
  14. 14.
    Gu H, Jiang H, Teng Z (2008) Existence and global exponential stability of periodic solution of BAM neural networks with impulses and recent-history distributed delays. Neurocomputing 71: 813–822CrossRefGoogle Scholar
  15. 15.
    Li K (2008) Delay-dependent stability analysis for impulsive BAM neural networks with time-varying delays. Comput Appl Math 56: 2088–2099zbMATHCrossRefGoogle Scholar
  16. 16.
    Chen J, Cui BT (2008) Impulsive effects on global asymptotic stability of delay BAM neural networks. Chaos Solitons Fractals 38: 1115–1125zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ho DWC, Liang JL, Lamc J (2006) Global exponential stability of impulsive high-order BAM neural networks with time-varying delays. Neural Netw 19: 1581–1590zbMATHCrossRefGoogle Scholar
  18. 18.
    Wen Z, Sun JT (2008) Global asymptotic stability of delay BAM neural networks with impulses via nonsmooth analysis. Neurocomputing 71: 1543–1549CrossRefGoogle Scholar
  19. 19.
    Wang H, Liao XF, Li CD (2007) Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay. Chaos Solitons Fractals 33: 1028–1039zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Xia YH, Huang ZK, Han MA (2008) Existence and global exponential stability of equilibrium for BAM neural networks with impulses. Chaos Solitons Fractals 37: 588–597zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Xia YH, Huang ZK, Han MA (2008) Exponential p-stability of delayed Cohen-Grossberg-type BAM neural networks with impulses. Chaos Solitons Fractals 38: 806–818zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Huang ZK, Xia YH (2008) Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses. Chaos Solitons Fractals 38: 489–498zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Yang FJ, Zhang CL, Wu DQ (2007) Global stability analysis of impulsive BAM type Cohen-Grossberg neural networks with delays. Appl Math Comput 186: 932–940zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Li Y, Yang C (2006) Global exponential stability analysis on impulsive BAM neural networks with distributed delays. J Math Anal Appl 324: 1125–1139zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lee DL (1998) A discrete sequential bidirectional associative memories for multistep pattern recognition. Pattern Recognit Lett 19: 1087–1102zbMATHCrossRefGoogle Scholar
  26. 26.
    Kannan SR (2005) Extended bidirectional associative memories: a study on poor education. Math Comput Model 42: 389–395zbMATHCrossRefGoogle Scholar
  27. 27.
    Mohamad S, Gopalsamy K (2003) Exponential stability of continuous-time and discrete-time delay cellular neural networks with delays. Appl Math Comput 135: 17–38zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mohamad S (2001) Global exponential stability in continuous-time and discrete-time delay bidirectional neural networks. Physica D159: 233–251MathSciNetGoogle Scholar
  29. 29.
    Mohamad S, Naim AG (2002) Discrete-time analogues of integrodifferential equations modelling bidirectional neural networks. J Comput Appl Math 138: 1–20zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Liang J, Cao J (2004) Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays. Chaos Solitons Fractals 22: 773–785zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Zeng Z, Huang D, Wang Z (2005) Global stability of a general class discrete-time delay recurrent neural networks. Neural Process Lett 22: 33–47CrossRefGoogle Scholar
  32. 32.
    Li Y (2004) Global stability and existence of periodic solutions of discrete delayed cellular neural networks. Phys Lett A 333: 51–61Google Scholar
  33. 33.
    Aulbach B, Hilger S (1990) A unified approach to continuous and discrete dynamics, Qualitative Theory of Differential Equations, Szeged, 1988, Colloq. Math. Soc. Janos Bolyai, vol. 53, North-Holland, Amsterdam, pp 37-56Google Scholar
  34. 34.
    Aulbach B, Hilger S (1990) Linear dynamic processes with inhomogeneous time scale, In Nonlinear Dynamics and Quantum Dynamical Systems, Gaussig, 1990, Math. Res, vol. 59, Academic Verlag, Berlin, pp 9-20Google Scholar
  35. 35.
    Hilger S (1990) Analysis on measure chains–a unified approach to continuous and discrete calculus. Results Math 18: 18–56zbMATHMathSciNetGoogle Scholar
  36. 36.
    Bi L, Bohner M, Fan M (2008) Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal 68: 1226–1245zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Agarwal RP, Bohner M, O’Regan D, Peterson A (2002) Dynamic equations on time scales: a survey. J Comput Appl Math 141: 1–26zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Bohner M, Peterson A (2001) Dynamic equations on time scales: an introduction with applications. Birkhauser, BostonzbMATHGoogle Scholar
  39. 39.
    Xing Y, Han M, Zheng G (2005) Initial value problem for first-order integro-differential equation of Volterra type on time scales. Nonlinear Anal 60: 429–442zbMATHMathSciNetGoogle Scholar
  40. 40.
    Li Y, Chen X, Zhao L (2009) Stability and existence of periodic solutions to delayed Cohen-Grossberg BAM neural networks with impulses on time scales. Neurocomputing 72: 1621–1630CrossRefGoogle Scholar
  41. 41.
    Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical science. Academic Press, NewYorkGoogle Scholar
  42. 42.
    Ozkan UM, Sarikaya MZ, Yildirim H (2008) Extensions of certain integral inequalities on time scales. Appl Math Lett 21: 993–1000CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of MathematicsYunnan UniversityYunnan, KunmingPeople’s Republic of China

Personalised recommendations