Neural Processing Letters

, Volume 26, Issue 3, pp 191–200 | Cite as

pth Moment Exponential Stability of Stochastic Cohen-Grossberg Neural Networks With Time-varying Delays

  • Enwen Zhu
  • Haomin Zhang
  • Yong Wang
  • Jiezhong Zou
  • Zheng Yu
  • Zhenting Hou


The pth moment exponential stability of stochastic Cohen-Grossberg with time-varying delays is investigated in this paper. A set of novel sufficient conditions on pth moment exponential stability are given for the considered system by using the well-known Razumikhin-type theorem. Finally, two examples with their numerical simulations are provided to show the correctness of our analysis.


Stochastic Cohen-Grossberg neural networks pth moment exponential stability Razumikhin-type theorem 

Mathematics Subject Classifications (2000)

92B20 93E15 34K50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen M and Grossberg S (1983). Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybernet. SMC-13: 15–26 MathSciNetGoogle Scholar
  2. 2.
    Yang Z and Xu D (2006). Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays. Appl Math Comput 177: 63–78 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cao J and Liang J (2004). Boundedness and stability for Cohen-Grossberg neural networks with time-varying delays. J Math Anal Appl 296: 665–685 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Xiong W and Cao J (2005). Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 64: 433–446 CrossRefGoogle Scholar
  5. 5.
    Cao J and Li X (2005). Stability in delayed Cohen-Grossberg neural network: LMI optimization approach. Physica D 212: 54–65 MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Ye H, Michel AN and Wang K (1995). Qualitative analysis of Cohen-Grossberg neural networks with multiple delays. Phys Rev E 51: 2611–2618 CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Tu F and Liao X (2005). Harmless delays for global asymptotic stability of Cohen-Grossberg neural networks. Chaos Solitons Fractals 26: 927–933 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Wan L and Sun J (2005). Global exponential stability and periodic solutions of Cohen-Grossberg neural networks with continuously distributed delays. Physica D 208: 1–20 MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Hwang C, Cheng C and Liao T (2003). Global exponential stability of generalized Cohen-Grossberg neural networks with delays. Phys Lett A 319: 157–166 MATHCrossRefADSGoogle Scholar
  10. 10.
    Liao X, Li C and Wong K (2004). Criteria for exponential stability of Cohen-Grossberg neural networks. Neural Networks 17: 1401–1414 MATHCrossRefGoogle Scholar
  11. 11.
    Haykin S, (1994) Neural Networks. Prentice-Hall, NJGoogle Scholar
  12. 12.
    Civalleri P, Gilli M, (1993) on the stability of cellular neural networks with delays. IEEE Trans Circuist Syst I 157–165Google Scholar
  13. 13.
    Liao X and Mao X (1996). Stability of stochastic neural networks. Neural Parallel Sci Comput 4: 205–224 MATHMathSciNetGoogle Scholar
  14. 14.
    Liao X and Mao X (1996). Exponential stability and instability of stochastic neural networks. Stochast Anal Appl 14: 165–185 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Blythea S, Mao X and Liao X (2001). Stability of stochastic delay neural networks. J Franklin Inst 338: 481–495 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mao X (1996). Razumikihin-type theorems on exponential stability of stochastic functional differential equations. Stochast Proc Appl 65: 233–250 MATHCrossRefGoogle Scholar
  17. 17.
    Mao X (1996). Robustness of exponential stability of stochastic differential delay equations. IEEE Trans Automat Control 41: 442–447 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wan L and Sun J (2005). Mean square exponential stability of stochastic delayed Hopfield neural networks. Phys Lett A 343: 306–318 CrossRefADSGoogle Scholar
  19. 19.
    Zhao H, Ding N, Dynamic analysis of stochastic Cohen-Grossberg neural networks with delays. Appl Math Comput doi: 10.1016/j.amc.2006.05.087
  20. 20.
    Li X, Cao J, (2005) Exponential stability of stochastic Cohen-Grossberg neural networks with time-varying delays. LNCS 162–167Google Scholar
  21. 21.
    Mao X (1997). Stochastic differential equations and aplplications. Horwood Publication, Chichester Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Enwen Zhu
    • 1
  • Haomin Zhang
    • 2
  • Yong Wang
    • 3
  • Jiezhong Zou
    • 2
  • Zheng Yu
    • 2
  • Zhenting Hou
    • 2
  1. 1.School of Mathematics and Computing SciencesChangsha University of Science and TechnologyChangsha, HunanP. R. China
  2. 2.School of MathematicsCentral South UniversityChangsha, HunanP. R. China
  3. 3.Department of MathematicsHarbin Institute of TechnologyHarbinP. R. China

Personalised recommendations