Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanisms of Toxic Effects of Homocysteine on the Nervous System

The review describes the metabolism of homocystein, causes of hyperhomocysteinemia, mechanisms underlying the respective negative effects on the nervous system, and main principles of correction of such disorders.

This is a preview of subscription content, log in to check access.


  1. 1.

    X. W. Hu, S. M. Qin, D. Li, et al., “Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis,” Acta Neurol. Scand., 128, No. 2, 73–82 (2013).

  2. 2.

    S. M Krishna., A. Dear, J. M. Craig, et al., “The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation,” Atherosclerosis, 228, No. 2, 295–305 (2013).

  3. 3.

    S. Chandrasekaran, S. Patil, R. Suthar, et al., “Hyperhomocysteinaemia in children receiving phenytoin and carbamazepine monotherapy: A cross-sectional observational study,” Arch. Dis. Child., 102, No. 4, 346–351 (2017).

  4. 4.

    J. M. Scott, A. M. Molloy, D. G. Kennedy, et al., “Effects of the disruption of transmethylation in the central nervous system: an animal model,” Acta Neurol. Scand. Suppl.,154, 27–31 (1994).

  5. 5.

    M. Ospina-Romero, S.C. Cannegieter, M. den Heijer, et al., “Hyperhomocysteinemia and risk of first venous thrombosis: The influence of (unmeasured) confounding factors,” Am. J. Epidemiol., 187, No. 7, 1392–1400 (2018).

  6. 6.

    E. Kararizou, G. Paraskevas, N. Triantafyllou, et al., “Plasma homocysteine levels in patients with multiple sclerosis in the Greek population,” J. Chin. Med. Assoc., 76, No. 11, 611–614 (2013).

  7. 7.

    S. Hadj-Taieb, M. Feki, M. B. Hammami, et al., “Plasma total homocysteine: Usual values and main determinants in adults living in the Great Tunis region,” Clin. Lab., 60, No. 6, 897–902 (2014).

  8. 8.

    D. A. Zobova and S. A. Kozlov, “The role of homocysteine in the pathogenesis of certain diseases,” Univ. Proc., 39, No. 3, 132–141 (2016).

  9. 9.

    P. Ganguly and S. F. Alam, “Role of homocysteine in the development of cardiovascular disease,” Nutr. J.,14, No. 6 (2015), doi:

  10. 10.

    N. A. Korovina, N. M. Podzolkova, and I. N. Zaharova, Features of Nutrition of Pregnant Women and Women during Lactation, Medpraktika, Moscow (2008).

  11. 11.

    D. E. Smith, J. M. Hornstra, R. M. Kok, et al., “Folic acid supplementation does not reduce intracellular homocysteine and may disturb intracellular one-carbon metabolism,” Clin. Chem. Lab. Med., 51, No. 8, 1643–1650 (2013).

  12. 12.

    R. Moretti, M. Dal Ben, S. Gazzin, et al., “Homocysteine in neurology: From endothelium to neurodegeneration,” Curr. Nutr. Food Sci.,13, No. 3, 163–175 (2017).

  13. 13.

    H. Wang, Q. Sun, Y. Zhou, et al., “Nitration-mediated deficiency of cystathionine β-synthase accelerates the progression of hyperhomocysteinemia,” Free Radic. Biol. Med., 113, 519–529 (2017).

  14. 14.

    D. X. Li, X. Y. Li, H. Dong, et al., “Eight novel mu- tations of CBS gene in nine Chinese patients with classical homocystinuria,” World J. Pediatr., 14, No. 2, 197–203 (2018).

  15. 15.

    M. Essouma and J. J. N. Noubiap, “Therapeutic potential of folic acid supplementation for cardiovascular disease prevention through homocysteine lowering and blockade in rheumatoid arthritis patients,” Biomark. Res., 3, 24 (2015), doi:

  16. 16.

    P. Zhao, J. F. Yang, W. Liu, et al., “Effects of entacapone on plasma homocysteine in Parkinson’s disease patients on levodopoa,” Zhonghua Yi Xue Za Zhi., 93, No. 7, 512–515 (2013).

  17. 17.

    N. Hodgson, M. Trivedi, C. Muratore, et al., “Soluble oligomers of amyloid-β cause changes in redox state, DNA methylation, and gene transcription by inhibiting EAAT3 mediated cysteine uptake,” J. Alzheimers Dis., 36, No. 1, 197–209 (2013).

  18. 18.

    M. C. Borges, F. P. Hartwig, I. O. Oliveira, and B. L. Hor-ta, “Is there a causal role for homocysteine concentration in blood pressure? A Mendelian randomization study,” Am. J. Clin. Nutr., 103, No. 1, 39–49 (2016).

  19. 19.

    T. Müller, T. van Laar, D. R. Cornblath, et al., “Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery,” Parkinsonism Relat. Disord.,19, No. 5, 501–507 (2013).

  20. 20.

    H. Tian, D. Tian, C. Zhang, et al., “Efficacy of folic acid therapy in patients with hyperhomocysteinemia,” J. Am. Coll. Nutr., 36, No. 7, 528–532 (2017).

  21. 21.

    S. U. Nigwekar, A. Kang, S. Zoungas, et al., “Interventions for lowering plasma homocysteine levels in dialysis patients,” Cochrane Database Syst. Rev., 5, CD004683 (2016).

  22. 22.

    J. Li, Y. Zhang, Y. Zhang, et al., “GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation”, Redox Biol., 17, 386–399 (2018).

  23. 23.

    L. M. Miles, E. Allen, K. Mills, et al., “Vitamin B12 status and neurologic function in older people: A crosssectional analysis of baseline trial data from the older people and enhanced neurological function (OPEN) study,” Am. J. Clin. Nutr., 104, No. 3, 790–796 (2016).

  24. 24.

    G. Kondakçi, A. F. Aydin, S. Doğru-Abbasoğlu, and M. Uysal, “The effect of N-acetylcysteine supplementation on serum homocysteine levels and hepatic and renal oxidative stress in homocysteine thiolactonetreated rats,” Arch, Physiol. Biochem., 123, No. 2, 128–133 (2017).

  25. 25.

    M.G. Drangoy, Encyclopedia of Clinical Obstetrics (2013).

  26. 26.

    R. Ansari, A. Mahta, E. Mallack, and J. J. Luo, “Hyperhomocysteinemia and neurologic disorders: A review,” J. Clin. Neurol., 10, No. 4, 281–288 (2014).

  27. 27.

    S. Awata, K. Nakayama, I. Suzuki, et al., “Changes in cystathionine gamma-lyase in various regions of rat brain during development,” Biochem. Mol. Biol. Int., 35, No. 6, 1331–1338 (1995).

  28. 28.

    M. Barroso, C. Florindo, H. Kalwa, et al., “Inhibition of cellular methyltransferases promotes endothelial cell and activation by suppressing of glutathione peroxidase 1 protein expression,” J. Biol. Chem., 289, No. 22, 15350–15362 (2014).

  29. 29.

    M. Curro, A. Gugliandolo, C. Gangemi, et al., “Toxic effects of mildly elevated homocysteine concentrations in neuronal-like cells,” Neurochem. Res.,39, No. 8, 1485–1495 (2014).

  30. 30.

    B. Debreceni and L. Debreceni, “The role of homocysteine-lowering B-vitamins in the primary prevention of cardiovascular disease,” Cardiovasc. Ther., 32, No. 3, 130–138 (2014).

  31. 31.

    R. Griffiths and N. Tudball, “Observations on the fate of cystathionine in rat brain,” Life Sci.,19, No. 8, 1217–1224 (1976).

  32. 32.

    H. Haddadi-Guemghar, A. Tlili, J. Dairou, et al., “Effect of lyophilized prune extract on hyperhomocysteinemia in mice,” Food Chem. Toxicol., 103, 183–187 (2017).

  33. 33.

    Y. He, S. Liu, Z. Zhang, et al., “Imbalance of endogenous hydrogen sulfide and homocysteine in chronic obstructive pulmonary disease combined with cardiovascular disease,” Front. Pharmacol., 8, 624 (2017).

  34. 34.

    H. Škovierová, E. Vidomanová, S. Mahmood, et al., “The molecular and cellular effect of homocysteine metabolism imbalance on human health,” Int. J. Mol. Sci., 17, No. 10, 1733 (2016).

  35. 35.

    X. S. Xia, X. Li, L. Wang, et al., “Clinical study taking folic acid and vitamin B12 and reducing the level of a symmetric dimethylarginine in the plasma in patients with acute ischemic stroke,” J. Clin. Neurosci., 21, No. 9, 1586–1590 (2014).

  36. 36.

    G. Yin, Y. Wang, X. M. Cen, et al., “Lipid peroxidationmediated inflammation promotes cell apoptosis through activation of NF-κB pathway in rheumatoid arthritis synovial cells,” Mediators Inflamm.,2015, 460310 (2015).

  37. 37.

    A. Towfighi, B. Arshi, D. Markovic, and B. Ovbiagele, “Homocysteine-lowering therapy and risk of recurrent stroke, myocardial infarction and death: The impact of age in the VISP trial,” Cerebrovasc. Dis., 37, No. 4, 263–267 (2014).

  38. 38.

    E. Voskoboeva, A. Semyachkina, M. Yablonskaya, and E. Nikolaeva, “Homocystinuria due to cystathionine beta-synthase (CBS) deficiency in Russia: Molecular and clinical characterization,” Mol. Genet. Metab. Rep., 14, 47–54 (2018).

  39. 39.

    S. Pushpakumar, S. Kundu, and U. Sen, “Endothelial dysfunction: The link between homocysteine and hydrogen sulfide,” Curr. Med. Chem., 21, No. 32, 3662–3672 (2014).

  40. 40.

    C. Ramambason, G. Moroy, F. Daubigney, et al., “Effects of cadmium administration in hyperhomocysteinemic mice due to cystathionine beta synthase deficiency,” Exp. Toxicol. Pathol., 68, No. 6, 365–370 (2016).

  41. 41.

    V.I. Duda, Obstetrics. Textbook, Ripo, Minsk (2013).

  42. 42.

    D. V. Medvedev, V. I. Zvyagina, and M. A. Fomina,” Method for modeling severe forms of hyperhomocysteinemia in rats,” Ross. Med. Biol. Vestn. Them. Acad. Pavlova.4, 42–46 (2014).

  43. 43.

    L.A. Afman, H.J. Blom, M.J. Drittij, et al., “Inhibition of transmethylation disturbs neurulation in chick embryos,” Brain Res. Dev. Brain Res., 158, Nos. 1–2, 59–65 (2005).

  44. 44.

    C. W. Christine, P. Auinger, A. Joslin, et al., “Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson’s disease,” Mov. Disord., 33, No. 5, 762–770 (2018).

  45. 45.

    R. Clarke, D. Bennett, S. Parish, et al., “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr., 100, No. 2, 657–666 (2014).

  46. 46.

    Q. Zhang, S. Li, L. Li, et al., “Metformin treatment and homocysteine: A systematic review and meta-analysis of randomized controlled trials,” Nutrients, 8, No. 12, pii. E798 (2016).

  47. 47.

    X. M. Zhang, Y. Q. Zhao, H. Yan, et al., “Inhibitory effect of homocysteine on rat neural stem cell growth in vitro is associated with reduced protein levels and enzymatic activities of aconitase and respiratory complex III,” J. Bioenerg. Biomembr, 49, No. 2, 131–138 (2017).

  48. 48.

    Z. Shi, Y. Guan, Y. R. Hou, “Elevated total homocysteine levels in acute ischemic stroke are associated with longterm mortality,” Stroke, 46, No. 9, 2419–2425 (2015).

  49. 49.

    A. D. Smith and H. Refsum, “Homocysteine, B vitamins, and cognitive impairment,” Annu. Rev. Nutr., 36, 211–239 (2016).

  50. 50.

    B. R. Price, D. M. Wilcock, and E. M. Weekman, “Hyperhomocysteinemia as a risk factor for vascular contributions to cognitive impairment and dementia,” Front. Aging Neurosci., 10, 350 (2018).

  51. 51.

    D. Narayanan, A. Luvai, R. Barski, et al., “Stroke in a young man,” BMJ, 347, f4484 (2013).

  52. 52.

    A. R. Nelson, M. D. Sweeney, A. P. Sagare, and B. V. Zlokovic, “Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease,” Biochim. Biophys. Acta, 1862, No. 5, 887–900 (2016).

  53. 53.

    J. Loscalzo and D. E. Handy, “Epigenetic modifications: Basic mechanisms and role in cardiovascular disease (2013 Grover Conference Series),” Pulm. Circ., 4, No. 2, 169–174 (2014).

  54. 54.

    A. J. Marti-Carvajal, I. Solà, D. Lathyris, and M. Dayer, “Homocysteine-lowering interventions for preventing cardiovascular events,” Cochrane Database Syst. Rev., 8, CD006612 (2017).

  55. 55.

    O. Kranich, R. Dringen, M. Sandberg, and B. Hamprecht, “Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: Preference for cysteine,” Glia, 22, No. 1, 11–18 (1998).

  56. 56.

    S. Ibrahim, S. Maqbool, M. Azam, et al., “CBS mutations and MTHFR SNPs causative of hyperhomocysteinemia in Pakistani children,” Mol. Biol. Rep., 45, No. 3, 353–360 (2018).

  57. 57.

    A. Ichinohe, T. Kanaumi, S. Takashima, et al., “Cystathionine beta-synthase is enriched in the brains of Down’s patients,” Biochem. Biophys. Res. Commun., 338, No. 3, 1547–1550 (2005).

  58. 58.

    S. S. Kang and R. S. Rosenson, “Analytic approaches for the treatment of hyperhomocysteinemia and its im-pact on vascular disease,” Cardiovasc. Drugs Ther., 32, No. 2, 233–240 (2018).

  59. 59.

    G. Wu, Y.-Z. Fang, S. Yang, et al., “Glutathione metabolism and its implications for health,” J. Nutr., 134, No. 3, 489–492 (2004).

  60. 60.

    X. Q. Wu, J. Ding, A. Y. Ge, et al., “Acute phase homocysteine related to severity and outcome of atherothrombotic stroke,” Eur. J. Intern. Med., 24, No. 4, 362–367 (2013).

  61. 61.

    S. Rezaei, S. Shab-Bidar, A. Abdulahi Abdurahman, and K. Djafarian, “Oxcarbazepine administration and the serum levels of homocysteine, vitamin B12 and folate in epileptic patients: A systematic review and metaanalysis,” Seizure, 45, 87–94 (2017).

  62. 62.

    R. Moretti and P. Caruso, The controversial role of homocysteine in neurology: from labs to clinical practice,” Int . J. Mol. Sci., 20, No. 1, pii. E231 (2019).

  63. 63.

    M. I. Mendes, H. G. Colaço, D. E. Smith, et al., “Reduced response of cystathionine beta-synthase (CBS) to S-adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in homocystinuria patients,” J. Inherit. Metab. Dis., 37, No. 2, 245–254 (2014).

  64. 64.

    E. Kumral, G Saruhan, D. Aktert, and M. Orman, “Association of hyperhomocysteinemia with stroke recurrence after initial stroke,” J. Stroke Cerebrovasc. Dis., 25, No. 8, 2047–2054 (2016).

  65. 65.

    H. M. Kwon, Y. S. Lee, H. J. Bae, and D. W. Kang, “Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke,” Stroke,45, No. 3, 871–873 (2014).

  66. 66.

    P. Jud, F. Hafner, N. Verheyen, et al., “Age-dependent effects of homocysteine and dimethylarginines on cardiovascular mortality in claudicant patients with lower extremity arterial disease,” Heart Vessels, 33, No. 12, 1453–1462 (2018).

  67. 67.

    Homocysteine Studies Collaboration, “Homocysteine and risk of ischemic heart disease and stroke: a metaanalysis, JAMA, 288, No. 16, 2015–2022 (2002).

  68. 68.

    P. Fang, D. Zhang, Z. Cheng, et al., “Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis,” Diabetes, 63, No. 12, 4275–4290 (2014).

  69. 69.

    P. Forti., F. Maioli, G. Arnone, et al., “Homocysteinemia and early outcome of acute ischemic stroke in elderly patients,” Brain Behav., 6, No. 5, e00460 (2016).

  70. 70.

    G. H. Doherty, “Homocysteine and Parkinsons disease: a complex relationship,” J. Neurol. Disord., 1, 1–9 (2013).

  71. 71.

    R. Esse, M. S. Rocha, M. Barroso., et al., “Protein arginine methylation is more prone to inhibition by S-adenosylhomocysteine than DNA methylation in vascular endothelial cells,” PLoS One , 8, No. 2, e55483 (2013).

  72. 72.

    L. Han, Q. Wu, C. Wang, et al., “Homocysteine, ischemic stroke, and coronary heart disease in hypertensive patients: A population-based, prospective cohort study,” Stroke,46, No. 7, 1777–1786 (2015).

  73. 73.

    K. S. McCully, “Hyperhomocysteinemia, suppressed immunity and altered oxidative metabolism caused by pathogenic microbes in atherosclerosis and dementia,” Front. Aging Neurosci., 9, 324 (2017).

  74. 74.

    X. Pang, J. Liu, J. Zhao, et al., “Homocysteine induces the expression of C-reactive protein via NMDAr-ROSMAPK- NF-κB signal pathway in rat vascular smooth muscle cells,” Atherosclerosis,236, No. 1, 73–81 (2014).

  75. 75.

    M. Petras, Z. Tatarakova, M. Kovalska, et al., “Hyperhomocysteinemia as a risk factor for the neuronal system disorders,” J. Physiol. Pharmacol., 65, No.1, 15–23 (2014).

  76. 76.

    R. Surtees, A. Bowron, and J. Leonard, “Cerebrospinal fluid and plasma total homocysteine and related metabolites in children with cystathionine beta-synthase deficiency: The effect of treatment,” Pediatr. Res., 42, No. 5, 577–582 (1997).

  77. 77.

    K. S. McCully, “homocysteine, infections, polyamines, oxidative metabolism, and the pathogenesis of dementia and atherosclerosis,” J. Alzheimers Dis., 54, No. 4, 1283–1290 (2016).

  78. 78.

    Y. Huo, J. Li, X. Qin, et al., “Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial,” JAMA, 313, No. 13, 1325–1335 (2015).

  79. 79.

    M. Huemer, D. Diodato, B. Schwahn, et al., “Guidelines for diagnosis and management of the cobalamin-related remethylation disorders: cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency,” J. Inherit. Metab. Dis., 40, No. 1, 21–48 (2017).

  80. 80.

    A. Koller, A. Szenasi, G. Dornyei, et al., “Coronary microvascular and cardiac dysfunction due to homocysteine pathometabolism; a complex therapeutic design,” Curr. Pharm. Des., 24, No. 25, 2911–2920 (2018).

  81. 81.

    K. A. Jellinger, “Pathology and pathogenesis of vascular cognitive impairment – a critical update,” Front. Aging Neurosci., 5, 17 (2013).

  82. 82.

    G. Shanker, J. W. Allen, L. A. Mutkus, and M. Aschner, “The uptake of cysteine in cultured primary astrocytes and neurons,” Brain Res., 902, No. 2, 156–163 (2001).

  83. 83.

    M. Sharma, M. Tiwari, and R. K. Tiwari, “Hyperhomocysteinemia: Impact on neurodegenerative diseases,” Basic Clin. Pharmacol. Toxicol., 117, No. 5, 287–296 (2015).

  84. 84.

    R. Esse, M. Barroso, I. Tavares de Almeida, and R. Castro, “The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-art.” Int. J. Mol. Sci.,20. No. 4, pii. E867 (2019)

  85. 85.

    J. L. Mills, J. M. Scott, P. N. Kirke, et al., “Homocysteine and neural tube defects,” J. Nutr., 126, No. 3, 756S–760S (1996).

  86. 86.

    N. Licking, C. Murchison, B. Cholerton, et al., “Homocysteine and cognitive function in Parkinson’s,” Parkinsonism Relat. Disord., 44, 1–5 (2017).

  87. 87.

    B. Gong, L. Liu, Z. Li, et al., “Novel compound heterozygous CBS mutations cause homocystinuria in a Han Chinese family,” Sci . Rep., 5, 17947 (2015).

  88. 88.

    S. Chen, Z. Dong, Y. Zhao, et al., “Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat ischemic brain,” Sci. Rep. , 7, 6932 (2017).

  89. 89.

    Y. Chen, Liu R., G. Zhang, et al., “Hypercysteinemia promotes atherosclerosis by reducing protein S-nitrosylation,” Biomed Pharmacother.70, 253–259 (2015).

  90. 90.

    A. AlDakheel, L. V. Kalia, and A. E. Lang, “Pathogenesis- targeted, disease-modifying therapies in Parkinson disease,” Neurotherapeutics,11, No. 1, 6–23 (2014).

  91. 91.

    J. Deng, S. Lü, H. Liu, et al., “Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming,” J. Immunol., 198, No. 1, 170–183 (2017).

  92. 92.

    Y. Chen, S. Zhao, Y. Wang, et al., “Homocysteine reduces protein S-nitrosylation in endothelium,” Int. J .Mol .Med., 34, No. 5, 1277–1285 (2014).

  93. 93.

    B. Meng, W. Gao, J. Wei, et al., “Quercetin reduces serum homocysteine level in rats fed a methionineenriched diet,” Nutrition, 29, No. 4, 661–666 (2013).

  94. 94.

    A. D. Smith, H. Refsum, T. Bottiglieri, et al., “Homocysteine and dementia: An International Consensus Statement,” J. Alzheimers Dis., 62, No. 2, 561–570 (2018).

  95. 95.

    B. Zappacosta, P. Mastroiacovo, S. Persichilli, et al., “Homocysteine lowering by folate-rich diet or pharmacological supplementations in subjects with moderate hyperhomocysteinemia,” Nutrients, 5, No. 5, 1531–1543 (2013).

  96. 96.

    M. Mattson and T. Shea, “Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders,” Trends Neurosci.,26, No. 3, 137–146 (2003).

  97. 97.

    A. Boldyrev, E. Bryshkova, A. Mashkina, and E. Vladychenskaya, “Why is homocysteine toxic for the nervous and immune systems?” Curr. Aging Sci., 6, No. 1, 29–36 (2013).

  98. 98.

    M. Salter and R. Fern, “NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury,” Nature, 438, No. 7071, 1167–1171(2005).

Download references

Author information

Correspondence to N. M. Nevmerzhytska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nevmerzhytska, N.M., Orzheshkovskyi, V.V., Dzevulska, I.V. et al. Mechanisms of Toxic Effects of Homocysteine on the Nervous System. Neurophysiology 51, 379–387 (2019).

Download citation


  • homocysteine
  • hyperhomocysteinemia
  • toxic effects
  • pathogenesis
  • nervous system