Effect of Riluzole, a Glutamate Release Inhibitor, on Synaptic Plasticity in the Intrahippocampal Aβ Rat Model of Alzheimer’s Disease

  • Z. Mokhtari
  • T. BaluchnejadmojaradEmail author
  • F. Nikbakht
  • J. Fahanik-Babaei
  • M. RoghaniEmail author

Alzheimer’s disease (AD) is associated with cognitive deficits of varying degrees and with impairment of the synaptic transmission-related tasks. Pathologically, AD is highlighted with accumulation of extracellular β-amyloid plaques and of neurofibrillary tangles. Glutamate-mediated neurotoxicity plays a pivotal role in the pathogenesis of AD. Deficits of long-term potentiation (LTP) and neuronal synaptic plasticity as an essential mechanism of the learning and memory disorders in AD has been ascribed to over-activation of glutamate receptors. We examined the effect of riluzole, a glutamate release inhibitor, on LTP impairment in the dentate gyrus (DG) in a rat model of AD provided by bilateral intrahippocampal amyloid β (Aβ 25-35) injections; riluzole was administered at a dose of 10 mg/kg. The LTP in perforant path-DG synapses was evaluated using measurements of the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude. We found that Aβ (25, 26, 27, 28, 29, 30, 31, 32, 33, 34) significantly decreased the fEPSP slope and PS amplitude, as compared to those in the sham group; riluzole pretreatment in the Aβ-microinjected group significantly increased these parameters. Taken together, it is concluded that riluzole could noticeably improve synaptic plasticity and enhan ce LTP in the rat model of AD.


riluzole Alzheimer disease hippocampus dentate gyrus amyloid β long-term potentiation synaptic plasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Amemori, P. Jendelova, J. Ruzicka, et al., “Alzheimer’s disease: Mechanism and approach to cell therapy,” Int. J. Mol. Sci., 16, No. 11, 26417–26451 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    E. J. Mufson, M. D. Ikonomovic, S. E. Counts, et al., “Molecular and cellular pathophysiology of preclinical Alzheimer’s disease,” Behav. Brain Res., 311, No. 1, 54–69 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    H.-C. Huang and Z.-F. Jiang, “Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease,” J. Alzheimers. Dis., 16, No. 1, 15–27 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Serrano-Pozo, M. P. Frosch, E. Masliah, et al., “Neuropathological alterations in Alzheimer disease,” Cold Spring Harb. Perspect. Med., 1, No. 1, a006189, (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    M. R. Hynd, H. L. Scott, and P. R. Dodd, “Glutamatemediated excitotoxicity and neurodegeneration in Alzheimer’s disease,” Neurochem. Int., 45, No. 5, 583–595 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    J.-y. Koh, L. L. Yang, and C. W. Cotman, “β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage,” Brain Res., 533, No. 2, 315–320 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    Q. S. Chen, B. L. Kagan, Y. Hirakura, et al., “Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptides.” J. Neurosci. Res., 60, No. 1, 65–72 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Barghorn, V. Nimmrich, A. Striebinger, et al., “Globular amyloid β-peptide 1− 42 oligomer− a homogenous and stable neuropathological protein in Alzheimer’s disease,” J. Neurochem., 95, No. 3, 834–847 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Ondrejcak, I. Klyubin, N.-W. Hu, et al., “Alzheimer’s disease amyloid β-protein and synaptic function,” Neuromol. Med., 12, No. 1, 13–26 (2010).CrossRefGoogle Scholar
  10. 10.
    L. Gasparini and A. Dityatev, “β-Amyloid and glutamate receptors,” Exp. Neurol., 212, No. 1, 1–4 (2008).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Li, S. Hong, N. E. Shepardson, et al., “Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake,” Neuron, 62, No. 6, 788–801 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    L. Texidó, M. Martín-Satué, E. Alberdi, et al., “Amyloid β peptide oligomers directly activate NMDA receptors,” Cell Calcium, 49, No. 3, 184–190 (2011).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Coderre, N. Kumar, C. Lefebvre, et al., “A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain,” J. Neurochem., 100, No. 5, 1289–1299 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    C. A. Del Negro, C. Morgado-Valle, J. A. Hayes, et al., “Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation,” J. Neurosci., 25, No. 2, 446–453 (2005).PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    S.-J. Wang, K.-Y. Wang, and W.-C. Wang, “Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes),” Neuroscience, 125, No. 1, 191–201 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    G. M. Chowdhury, M. Banasr, R. A. de Graaf, et al., “Chronic riluzole treatment increases glucose metabolism in rat prefrontal cortex and hippocampus,” J. Cerebr. Blood Flow Metab., 28, No. 12, 1892–1897 (2008).CrossRefGoogle Scholar
  17. 17.
    M. B. Kennedy, “Signal-processing machines at the postsynaptic density,” Science, 290, No. 5492, 750–754 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    G. B. Landwehrmeyer, B. Dubois, J. G. de Yébenes, et al., “Riluzole in Huntington’s disease: a 3-year, randomized controlled study,” Ann. Neurol., 62, No. 3, 262–272 (2007).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Pittenger, V. Coric, M. Banasr, et al., “Riluzole in the treatment of mood and anxiety disorders,” CNS Drugs, 22, No. 9, 761–786 (2008).PubMedCrossRefGoogle Scholar
  20. 20.
    C. A. Zarate Jr. and H. K. Manji, “Riluzole in psychiatry: a systematic review of the literature,” Expert Opin. Drug Metab. Toxicol., 4, No. 9, 1223–1234 (2008).PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    A. C. Pereira, H. K. Lambert, Y. S. Grossman, et al., “Glutamatergic regulation prevents hippocampaldependent age-related cognitive decline through dendritic spine clustering,” Proc. Natl. Acad. Sci. USA, 111, No. 52, 18733–18738 (2014).PubMedCrossRefGoogle Scholar
  22. 22.
    H. M. Brothers, I. Bardou, S. C. Hopp, et al., “Riluzole partially rescues age-associated, but not LPS-induced, loss of glutamate transporters and spatial memory,” J. Neuroimmune Pharmacol., 8, No. 5, 1098–1105 (2013).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Sohanaki, T. Baluchnejadmojarad, F. Nikbakht, et al., “Pelargonidin improves memory deficit in amyloid beta25-35 rat model of Alzheimer’s disease by inhibition of glial activation, cholinesterase, and oxidative stress,” Biomed. Pharmacother., 83, No. 85–91 (2016).CrossRefGoogle Scholar
  24. 24.
    H. Sohanaki, T. Baluchnejadmojarad, F. Nikbakht, et al., “Pelargonidin improves passive avoidance task performance in a rat amyloid beta25-35 model of Alzheimer’s disease via estrogen receptor independent pathways,” Acta. Med. Iran., 54, No. 4, 245–250 (2016).PubMedGoogle Scholar
  25. 25.
    C. Watson, The Rat Brain in Stereotaxic Coordinates -the New Coronal Set: Academic press (2004)Google Scholar
  26. 26.
    P. S. Verhave, M. J. Jongsma, R. M. Van Den Berg, et al., “Neuroprotective effects of riluzole in early phase Parkinson’s disease on clinically relevant parameters in the marmoset MPTP model,” Neuropharmacology, 62, No. 4, 1700–1707 (2012).PubMedCrossRefGoogle Scholar
  27. 27.
    M. C. Obinu, M. Reibaud, V. Blanchard, et al., “Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence,” Mov. Disord., 17, No. 1, 13–19 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Paxinos and C. Watson, The Rat Brain Atlas in Stereotaxic Coordinates, San Diego: Academic, No. (1998).Google Scholar
  29. 29.
    H. Kalalian-Moghaddam, T. Baluchnejadmojarad, M. Roghani, et al., “Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocindiabetic rats,” Eur. J. Pharmacol., 698, No. 1, 259–266 (2013).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Bayat, T. Baluchnejadmojarad, M. Roghani, et al., “Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat,” Brain Res., 1452, No. 185–194 (2012).PubMedCrossRefGoogle Scholar
  31. 31.
    H. K. Moghaddam, T. Baluchnejadmojarad, M. Roghani, et al., “Berberine chloride improved synaptic plasticity in STZ induced diabetic rats,” Metab. Brain Dis., 28, No. 3, 421–428 (2013).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Baluchnejadmojarad and M. Roghani, “Involvement of high-conductance calcium-dependent potassium channels in short-term presynaptic plasticity in the rat dentate gyrus,” Neurophysiology, 45, No. 1, 1–5 (2013).CrossRefGoogle Scholar
  33. 33.
    M. J. Rowan, I. Klyubin, W. K. Cullen, et al., “Synaptic plasticity in animal models of early Alzheimer’s disease,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, No. 821–828 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide,” Nat. Rev. Mol. Cell Biol., 8, No. 2, 101–112 (2007).PubMedCrossRefGoogle Scholar
  35. 35.
    W. Danysz and C. G. Parsons, “Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections,” Br. J. Pharmacol., 167, No. 2, 324–352 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    A. M. Colangelo, L. Alberghina, and M. Papa, “Astrogliosis as a therapeutic target for neurodegenerative diseases,” Neurosci. Lett., 565, No. 59–64 (2014).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Carbone, S. Duty, and M. Rattray, “Riluzole elevates GLT-1 activity and levels in striatal astrocytes,” Neurochem. Int., 60, No. 1, 31–38 (2012).PubMedCrossRefGoogle Scholar
  38. 38.
    Z. Esposito, L. Belli, S. Toniolo, et al., “Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track?” CNS Neurosci. Ther., 19, No. 8, 549–555 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    H. C. Hunsberger, D. S. Weitzner, C. C. Rudy, et al., “Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression,” J. Neurochem., 135, No. 2, 381–94 (2015).PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physiology Research CenterIran University of Medical SciencesTehranIran
  2. 2.Department of Physiology, School of MedicineIran University of Medical SciencesTehranIran
  3. 3.Neurophysiology Research CenterShahed UniversityTehranIran

Personalised recommendations