Effects of a Combined Mitochondria-Targeted Treatment on the State of Mitochondria and Synaptic Membranes from the Brains of Diabetic Rats

  • T. M. KuchmerovskaEmail author
  • K. O. Dyakun
  • M. M. Guzyk
  • L. V. Yanytska
  • I. B. Pryvrotska

On samples of the mitochondria and synaptic membranes isolated from rat brains using differential centrifugation, we tried to evaluate the neuroprotective efficacy of a combination of mitochondriaspecific antioxidants, acetyl-L-carnitine (ALC) and α-lipoic acid (LA), with nicotinamide (NAm), against diabetes-induced disorders in the CNS. Three groups of adult male Wistar rats were examined; these were control intact rats (group C), animals with experimental streptozotocin (STZ)-induced diabetes (group D; 6 weeks after STZ injections), and diabetic rats treated during the two final weeks of the above period by a combination of ALC, LA, and NAm (separate daily injections; doses 100, 50, and 100 mg/kg body mass, respectively; group D+T). At the day of preparation of the organelle samples, the mean blood glucose levels in groups C, D, and D+T were 4.8, 20.3, and 15.4 mM, respectively. The intensity of reactive oxygen species (ROS) production in the brain mitochondria from rats of group D measured by fluorescent analyses using 2’,7’-dichlorofluorescein diacetate was, on average, 37.2% greater than that in group C. Co-treatment provided a significant decrease in the above index in group D+T (27.8% in comparison with group D). Diabetes led to dramatic intensification of the CYP2E1 protein level in the liver of group D animals (242% vs. group C). In group D+T, this index was 33.1% lower than that in group D.


diabetes oxidative stress acetyl-L-carnitine alpha-lipoic acid nicotinamide CYP2E1 mitochondria membrane potential synaptic membranes ATP NAD+ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. T. Jerram and R. D. Leslie, “The genetic architecture of type 1 diabetes,” Genes, 8, No. 8, 209 (2017), doi: Scholar
  2. 2.
    M. Rewers, H. Hyöty, A. Lernmark, et al., “The environmental determinants of diabetes in the young (TEDDY) study: 2018 update,” Curr. Diab. Rep., 18, No. 12, 136 (2018).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    K. A. Adeshara, A. G. Diwan, and R. S. Tupe, “Diabetes and complications: Cellular signaling pathways, current understanding and targeted therapies,” Curr. Drug Targets, 17, No. 11, 1309–1328 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    V.R. Drel, P. Pacher, R. Stavniichuk, et al., “Poly(ADPribose) polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice,” Int. J. Mol. Med., 28, No. 4, 629–635 (2011).PubMedPubMedCentralGoogle Scholar
  5. 5.
    W. Li, E. Huang, and S. Gao, “Type 1 diabetes mellitus and cognitive impairments: A systematic review,” J. Alzheimers Dis., 57, No. 1, 29–36 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    S. A. Hamed, “Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications,” Expert Rev. Clin. Pharmacol., 10, No. 4, 409–428 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    I. Trikash, V. Gumenyuk, and T. Kuchmerovska, “Diabetes-induced impairments of the exocytosis process and effect of gabapentin: the link with cholesterol level in neuronal plasma membranes,” Neurochem. Res., 40, No. 4, 723–732 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    E. Blázquez, E. Velázquez, V. Hurtado-Carneiro, and J.M. Ruiz-Albusac, “Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease,” Front. Endocrinol., 5, 161 (2014), doi: Scholar
  9. 9.
    J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev., 93, No. 1, 137–188 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    S. Dewanjee, S. Das, A.K. Das, et al., “Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets,” Eur. J. Pharmacol., 833, 472–523 (2018).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Verkhratsky, M. Trebak, F. Perocchi, et al., “Crosslink between calcium and sodium signaling,” Exp. Physiol., 103, No. 2, 157–169 (2018).PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    M. W. Jann and J. H. Slade, “Antidepressant agents for the treatment of chronic pain and depression,” Pharmacotherapy, 27, 1571–1587 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Kumar, G. N. Rao, B. B. Pal, and A. Pal, “Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoGDNA glycosylase levels in glial cells,” Int. J. Biochem. Cell. Biol., 53, 302–319 (2014).PubMedCrossRefGoogle Scholar
  14. 14.
    F. J. Gonzalez, “Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1,” Mutat. Res., 569, Nos. 1/2, 101–110 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    S. V. Bhagwat, M. R. Boyd, and V. Ravindranath, “Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria,” Biochem. Pharmacol., 59, No. 5, 573–582 (2000).PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    F. Seifar, M. Khalili, H. Khaledyan, et al., “α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review,” Nutr. Neurosci., 22, No. 5, 306–316 (2019), doi: Epub 2017 Nov 29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    G. Sergi, S. Pizzato, F. Piovesan, et al., “Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders,” Aging. Clin. Exp. Res., 30, No. 2, 133–138 (2018).PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    B. Picconi, I. Barone, A. Pisani, et al., “Acetyl-L-carnitine protects striatal neurons against in vitro ischemia: the role of endogenous acetylcholine,” Neuropharmacology, 50, No. 8, 917–923 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    N. Braidy, R. Grant, and P. S. Sachdev, “Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer’s disease,” Curr. Opin. Psychiat., 31, No. 2, 160–166 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Nesci, F. Trombetti, V. Ventrella, et al., “The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD,” Biol. Chem., 399, No. 2, 197–202 (2018).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Kuchmerovska, I. Shymanskyy, S. Chlopicki, and A. Klimenko, “1-Methylnicotinamide (MNA) in prevention of diabetes-associated brain disorders,” Neurochem. Int., 56, 221–228 (2010).PubMedCrossRefGoogle Scholar
  22. 22.
    I. P. Abita, R. Chicheportiche, and M. Schweitz, “Effect of neurotoxins (veratridine, sea anemone toxin, tetrodotoxin) on transmitter accumulation. Release by nerve terminals in vitro,” Biochemistry, 16, 1838–1864 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    C. P. LeBel, H. Ischiropoulos, and S. C. Bondy, “Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol., 5, 227–231 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Baracca, G. Sgarbi, G. Solaini, and G. Lenaz, “Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis,” Biochim. Biophys. Acta., 1606, Nos. 1/3, 137-146 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    W. B. Rathbun and M. V. Betlach, “Estimation of enzymatically produced orthophosphate in the presence of cysteine and adenosine triphosphate,” Anal. Biochem., 28, 436–445 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    H. U. Bergmeyer, Methods of Enzymatic Analysis, Academic Press, New York, London, Vol. 4 (1974).Google Scholar
  27. 27.
    O. W. Lowry, N. J. Rosebrough, R. L. Farr, and R. J. Randall, “Protein measurement with the Folin reagent,” J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  28. 28.
    M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Kuchmerovska, I. Shymanskyy, G. Donchenko, et al., “Poly(ADP-ribosyl)ation enhancement in brain cell nuclei is associated with diabetic neuropathy,” J. Diabetes Complications, 18, No. 4, 198–204 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    M. R. Lakshman, M. Garige, M. A. Gong, et al., “CYP2E1, oxidative stress, post-translational modifications and lipid metabolism,” Subcell. Biochem., 67, 199–233 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    A. S. Pivovarov, F. Calahorro, and R. J. Walker, “Na+/K+-pump and neurotransmitter membrane receptors,” Invert. Neurosci., 19, No. 1, 1 (2019), doi: CrossRefGoogle Scholar
  32. 32.
    T. Feldmann, M. Shahar, A. Baba, et al., “The Na(+)/Ca(2+)-exchanger: an essential component in the mechanism governing cardiac steroid-induced slow Ca(2+) oscillations,” Cell Calcium, 50, No. 5, 424–432 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    M. M. Guzyk, A. A. Tykhomyrov, V. S. Nedzvetsky, et al., “Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats,” Neurochem. Res., 41, No. 10, 2526–2537 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    M. M. Guzyk, K. O. Dyakun, L.V. Yanytska, et al., “Inhibitors of poly(ADP-ribose) polymerase-1 as agents providing correction of brain dysfunctions induced by experimental diabetes,” Neurophysiology,49, No. 3, 183–193 (2017).CrossRefGoogle Scholar
  35. 35.
    R. C. Scaduto Jr. and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluores-cent rhodamine derivatives,” Biophys. J., 76, No. 1, 469–477 (1999).PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    M. M. Guzyk, K. O. Dyakun, L. V. Yanitska, and Т. М. Kuchmerovska, “Influence of poly(ADP-ribose) polymerase inhibitors on some parameters of oxidative stress in blood leukocytes of rats with experimental diabetes,” Ukr. Biochem. J., 85, No. 1, 62–70 (2013).CrossRefGoogle Scholar
  37. 37.
    R. Castañeda-Arriaga and J. R. Alvarez-Idaboy, “Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data,” J. Chem. Inform. Model., 54, No. 6, 1642–1652 (2014).CrossRefGoogle Scholar
  38. 38.
    I. C. Fernandez, M. Del Carmen Camberos, G. A. Passicot, et al., “Children at risk of diabetes type 1. Treatment with acetyl-L-carnitine plus nicotinamide – case reports,” J. Pediatr. Endocrinol. Metab., 26, Nos. 3/4, 347–355 (2013).PubMedPubMedCentralGoogle Scholar
  39. 39.
    M. J. Clausen and H. Poulsen, “Sodium/potassium homeostasis in the cell,” Met. Ions Life Sci., 12, 41–67 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    G. E. Torres and S. G. Amara, “Glutamate and monoamine transporters: new visions of form and function,” Curr. Opin. Neurobiol., 17, No. 3, 304–312 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    H. P. Hammes, X. Du, D. Edelstein, et al., “Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy,” Nat. Med., 9, No. 3, 294–299 (2003).PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    T. Kuchmerovska, I. Shymanskyy, L. Bondarenko, and A. Klimenko, “Effects of nicotinamide supplementation on liver and serum contents of amino acids in diabetic rats,” Eur. J. Med. Res., 13, No. 6, 275–280 (2008).PubMedPubMedCentralGoogle Scholar
  43. 43.
    C. C. Shen, H. M. Huang, H. C. Ou, et al., “Protective effect of nicotinamide on neuronal cells under oxygen and glucose deprivation and hypoxia/reoxygenation,” J. Biomed. Sci., 11, No. 4, 472–481 (2004).PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    J. Luo, A. Y. Nikolaev, S. Imai, et al., “Negative control of p53 by Sir2alpha promotes cell survival under stress,” Cell, 107, No. 2, 137–148 (2001).PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    M. M. Guzyk, T. M. Tykhonenko, K. O. Dyakun, et al., “Altered sirtuins 1 and 2 expression in the brain of rats induced by experimental diabetes and the ways of its correction,” Ukr. Biochem. J., 91, No. 1, 21–29 (2019).CrossRefGoogle Scholar
  46. 46.
    J. S. Ungerstedt, M. Blomback, T. Soderstrom, “Nicotinamide is a potent inhibitor of proinflammatory cytokines,” Clin. Exp. Immunol., 131, No. 1, 48–52 (2003).PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    E. Turunc Bayrakdar, Y. Uyanikgil, L. Kanit, et al., “Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer’s disease,” Free Radic. Res., 48, No. 2, 146–158 (2014).PubMedCrossRefGoogle Scholar
  48. 48.
    G. Traina, “The neurobiology of acetyl-L-carnitine,” Front. Biosci. (Landmark Ed.), 21, 1314–1329 (2016).CrossRefGoogle Scholar
  49. 49.
    D. Ziegler, P. A. Low, and W. J. Litchy, “Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial,” Diabetes Care, 34, No. 9, 2054–2060 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    T. M. Kuchmerovskaya, P. K. Parhomets, G. V. Chichkovskaya, et al., “Nature of the brain synaptic membranes that bind nicotinamide adenine dinucleotide,” Neurochemistry,4, No. 4, 373–378 (1985).Google Scholar
  51. 51.
    L. J. Yan, “Redox imbalance stress in diabetes mellitus: Role of the polyol pathway,” Anim. Model Exp. Med., 1, No. 1, 7–13 (2018).CrossRefGoogle Scholar
  52. 52.
    W. H. Tang, K. A. Martin, and J. Hwa, “Aldose reductase, oxidative stress, and diabetes mellitus,” Front. Pharmacol., 3, 87–94 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    G. C. Ferreira and M. C. McKenna, “L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain,” Neurochem. Res., 46, No. 6, 1661–1675 (2017).CrossRefGoogle Scholar
  54. 54.
    T. Aureli, M. E. Di Cocco, C. Puccetti, et al., “Acetyl-Lcarnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain,” Brain Res., 796, Nos. 1/2, 75–81 (1998).PubMedCrossRefGoogle Scholar
  55. 55.
    G. C. Ferreira and M. C. McKenna, “L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain,” Neurochem. Res., 42, No. 6, 1661–1675 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    T. M. Hagen, J. Liu, J. Lykkesfeldt, et al., “Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress,” Proc. Natl. Acad. Sci. USA, 99, No. 4, 1870–1875 (2002).PubMedCrossRefGoogle Scholar
  57. 57.
    H. Schupke, R. Hempel, G. Peter, et al., “New metabolic pathways of alpha-lipoic acid,” Drug Metab. Dispos., 29, No. 6, 855–862 (2001).PubMedGoogle Scholar
  58. 58.
    M. Sinha, A. Bir, A. Banerjee, et al., “Multiple mechanisms of age-dependent accumulation of amyloid beta protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, α-lipoic acid and α-tocopherol,” Neurochem. Int., 95, 92–99 (2016).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. M. Kuchmerovska
    • 1
    Email author
  • K. O. Dyakun
    • 1
  • M. M. Guzyk
    • 1
  • L. V. Yanytska
    • 2
  • I. B. Pryvrotska
    • 3
  1. 1.Palladin Institute of Biochemistry, NAS of UkraineKyivUkraine
  2. 2.Bogomolets National Medical University, Ministry of Public Health of UkraineKyivUkraine
  3. 3.Gorbachevsky Ternopil’ State Medical University, Ministry of Public Health of UkraineTernopilUkraine

Personalised recommendations