Advertisement

Neurophysiology

, Volume 51, Issue 3, pp 180–190 | Cite as

Detection of Change to SSVEPs Using Analysis of Phase Space Topological Features: A Novel Approach

  • M. Z. SoroushEmail author
  • K. Maghooli
  • N. F. Pisheh
  • M. Mohammadi
  • P. Z. Soroush
  • P. Tahvilian
Article
  • 5 Downloads

A novel method based on EEG nonlinear analysis and analysis of steady-state visual evoked potentials (SSVEPs) has been processed. The EEG phase space is reconstructed, and some new geometrical features are extracted. Statistical analysis is carried out based on ANOVA, and most significant features are selected and then fed into a multi-class support vector machine (MSVM). Both offline and online phases are considered to fully address SSVEP detection. In the offline mode, the whole design evaluation, feature selection, and classifier training are performed. In the online scenario, the proposed method is evaluated and the detection rate is reported for both phases. Subject-dependent and subject-independent scenarios are considered in online SSVEP detection. Five significant features, whose P values are less than 0.05, have been selected. The MSVM is trained in the offline mode, and fivefold cross-validation is performed to evaluate the proposed method. The average classification performance for offline and online phases are 92.56 and 92.91%, respectively. The information transfer rate (ITR) is about 2.5 bits per trial in the online phase, which is comparable with the results of previous studies in this field. Thus, we have introduced a user-friendly and precise SSVEP-based brain-computer interface (BCI) system. The effectiveness of the proposed method has been demonstrated. The suggested geometrical features can truly reflect the brain dynamics. This study paves the way for researchers to conduct future studies in the field of SSVEP detection.

Keywords

steady-state visual evoked potential (SSVEP) detection brain-computer interface (BCI) nonlinear EEG analysis phase space reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Ramadan, S. Refat, M. A. Elshahed, and R. A. Ali, “Chapter 2-basics of brain computer interface,” in Brain-Computer Interfaces, Intelligent Systems Reference Library (A. E. Hassanien and A. T. Azar, eds.), 74. Switzerland: Springer International Publishing (2015)  https://doi.org/10.1007/978-3-319-10978-7-2.
  2. 2.
    S. Amiri, R. Fazel-Rezai, and V. Asadpour, A Review of Hybrid Brain-Computer Interface Systems, Advances in Human-Computer Interaction, Hindawi Publ. Corporation, 2013, Article ID 187024, 8 pages;  https://doi.org/10.1155/2013/187024.CrossRefGoogle Scholar
  3. 3.
    S. N. Carvalho, T. B. S. Costa, L. F. S. Uribe, et al., “Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs,” Biomed. Signal Proc. Control, 21 34–42 (2015); http://dx.doi.org/ https://doi.org/10.1016/j.bspc.2015.05.008.CrossRefGoogle Scholar
  4. 4.
    F. Lotte, M. Congedo, A. Lécuyer, et al., “A review of classification algorithms for EEG-based brain–computer interfaces,” J. Neural Eng., 4, No. 2, R1–R13 (2007); doi: https://doi.org/10.1088/1741-2560/4/2/R01.CrossRefPubMedGoogle Scholar
  5. 5.
    R. Ortner, B. Z. Allison, G. Korisek, et al., “An SSVEP BCI to control a hand orthosis for persons with tetraplegia,” IEEE Trans. Neural Syst. Rehab. Eng., 19, No. 1, 1–5 (2011).CrossRefGoogle Scholar
  6. 6.
    R. A. Ramadan and A. V. Vasilakos, “Brain computer interface: control signals review,” Neurocomputing, 223, 26–44 (2017), http://dx.doi.org/ https://doi.org/10.1016/j.neucom.2016.10.024.CrossRefGoogle Scholar
  7. 7.
    A. M. Savić and M. B. Popović, “Computer interface prototypes for upper limb rehabilitation: A review of principles and experimental results,” 23rd Telecommunications Forum Telfor (TELFOR), 452–459 (2015); doi:  https://doi.org/10.1109/TELFOR.2015.7377505.
  8. 8.
    N. Tiwari, D. R. Edla, S. Dodia, and A. Bablani, “Brain computer interface: A comprehensive survey,” Biol. Inspired Cogn. Archit., 26, 118–129 (2018); https://doi.org/ https://doi.org/10.1016/j.bica.2018.10.005. CrossRefGoogle Scholar
  9. 9.
    Z. İşcan and Z. Dokurb, “A novel steady-state visually evoked potential-based brain-computer interface design: Character Plotter,” 10, 145–152 (2014); http://dx.doi.org/ https://doi.org/10.1016/j.bspc.2013.11.009.CrossRefGoogle Scholar
  10. 10.
    T. Tanaka, C. Zhang, and H. Higashi, “SSVEP frequen-cy detection methods considering background EEG,” SCIS-ISIS, Kobe, Japan, 1138–1143 (2012); doi:  https://doi.org/10.1109/SCIS-ISIS.2012.6505369.
  11. 11.
    Y. Zhang, P. Xu, K. Cheng, and D. Yao, “Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface,” J. Neurosci. Methods, 221, 32–40 (2014); doi:  https://doi.org/10.1016/j.jneumeth.2013.07.018.CrossRefPubMedGoogle Scholar
  12. 12.
    H. Cecotti, “A time-frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses,” Pattern Recogn. Lett., 32, No. 8, 1145–1153 (2011); doi: https://doi.org/10.1016/j.patrec.2011.02.022.CrossRefGoogle Scholar
  13. 13.
    M. Labecki, R. Kus, A. Brzozowska, et al., “Nonlinear origin of SSVEP spectra: A combined experimental and modeling study,” Front. Comput. Neurosci., 10, 129 (2016); doi:  https://doi.org/10.3389/fncom.2016.00129.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    A. Luo and T. J. Sullivan, “A user-friendly SSVEPbased brain-computer interface using a time-domain classifier,” J. Neural. Eng., 7, No. 2, 026010 (2010); doi:  https://doi.org/10.1088/1741-2560/7/2/026010.CrossRefGoogle Scholar
  15. 15.
    D. Cernea and A. Kerren, “A survey of technologies on the rise for emotion-enhanced interaction,” J. Vis. Lang. Comput., 31, Part A, 70–86 (2015); http://dx.doi.org/ https://doi.org/10.1016/j.jvlc.2015.10.001.CrossRefGoogle Scholar
  16. 16.
    S. N. Resalat, V. Saba, and F. Afdideh, “A novel system for driver’s sleepiness detection using SSVEP,” The 16th CSI Int. Symposium on Artificial Intelligence and Signal Processing (AISP) (2012); doi: 10.1109/AISP.2012.6313770.Google Scholar
  17. 17.
    J. A. Roberts and P. A. Robinson, “Quantitative theory of driven nonlinear brain dynamics,” Neuroimage, 62, No. 3, 1947–1955 (2012); doi: https://doi.org/10.1016/j.neuroimage.2012.05.054.CrossRefPubMedGoogle Scholar
  18. 18.
    P. F. Diez, V. Mut, E. Laciar, and E. Avila, “A comparison of monopolar and bipolar EEG recordings for SSVEP detection,” Conf. Proc. IEEE Eng. Med. Biol. Soc.,2010, 5803–5806 (2010); doi:  https://doi.org/10.1109/IEMBS.2010.5627451.CrossRefPubMedGoogle Scholar
  19. 19.
    Z. Soroush, K. Maghooli, S. K. Setarehdan, and A. M. Nasrabadi, “A review on EEG signals-based emotion recognition,” Int. Clin. Neurosci., 4, No. 4, 118–129 (2017); DOI: https://doi.org/10.15171/icnj.2017.01.CrossRefGoogle Scholar
  20. 20.
    M. Z. Soroush, K. Maghooli, P. Z. Soroush, et al., “EEGbased emotion recognition through nonlinear analysis,” Int. J. Sci. Eng. Invest. , 7, No. 78, 62–69 (2018).Google Scholar
  21. 21.
    M. Z. Soroush, K. Maghooli, S. K. Setarehdan, and A. M. Nasrabadi, “A novel method of EEG-based emotion recognition using nonlinear features variability and Dempster–Shafer theory,” Biomed. Eng. Appl. Basis Commun., 30, No. 4 (2018), 1850026; doi:  https://doi.org/10.4015/S1016237218500266.CrossRefGoogle Scholar
  22. 22.
    M. Z. Soroush, K. Maghooli, S. K. Setarehdan, and A. M. Nasrabadi, “A novel approach to emotion recognition using local subset feature selection and modified Dempster-Shafer theory,” Behav. Brain Func., 14, No. 1, 17 (2018).CrossRefGoogle Scholar
  23. 23.
    M. Z. Soroush, K. Maghooli, S. K. Setarehdan, and A. M. Nasrabadi, “Emotion classification through nonlinear EEG analysis using machine learning methods,” Int. Clin. Neurosci., 4, No. 4, 118–129 (2018).CrossRefGoogle Scholar
  24. 24.
    S. Bagherzadeh, K. Maghooli, J. A. Farhadi, and M. Zangeneh Soroush, “Emotion recognition from physiological signals using parallel stacked autoencoders,” Neurophysiology, 50, No. 6, 428–435 (2018).CrossRefGoogle Scholar
  25. 25.
    M. Z. Soroush, K. Maghooli, S. K. Setarehdan, and A. M. Nasrabadi, “A novel EEG-based approach to classify emotions through phase space dynamics,” Signal Image Video Proc., 13, No. 6, 1149–1156 (2019); https://doi.org/ https://doi.org/10.1007/s11760-019-01455-y.CrossRefGoogle Scholar
  26. 26.
    M. Z. Soroush, K. Maghooli, S. K. Setarehdan, and A. M. Nasrabadi, “Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory,” Med. Hypotheses, 127, 34–45 (2019); doi: https://doi.org/ https://doi.org/10.1016/j.mehy.2019.03.025
  27. 27.
    D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am., 56, No. 11, 1628–1633 (1966); doi: https://doi.org/10.1364/JOSA.56.001628.CrossRefGoogle Scholar
  28. 28.
    P. Z. Soroush and M. B. Shamsollahi, “A non-user-based BCI application for robot control,” 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES); doi:10.1109/IECBES.2018.8626701.Google Scholar
  29. 29.
    F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, “Steady-state visually evoked potentials: focus on essential paradigms and future perspectives,” Prog. Neurobiol., 90, No. 4, 418–438 (2010); doi: https://doi.org/10.1016/j.pneurobio.2009.11.005 CrossRefPubMedGoogle Scholar
  30. 30.
    S. Lashkari, A. Sheikhani, M. R. Hashemi Golpayegani, et al., “Detection and prediction of absence seizures based on nonlinear analysis of the EEG in Wag/Rijanimal model,” Int. Clin. Neurosci., 5, No. 1, 21–27 (2018).CrossRefGoogle Scholar
  31. 31.
    S. Lashkari, A. Sheikhani, M. R. Hashemi Golpayegani, et al., “Topological feature extraction of nonlinear signals and trajectories and its application in EEG signals,” Turk. J. Elec. Eng. Comp. Sci., 26, No. 3, 1329–1342 (2018); doi:  https://doi.org/10.3906/elk-1708-59.CrossRefGoogle Scholar
  32. 32.
    M. Kleiner, D. Brainard, D. Pelli, et al., “What’s new in Psychtoolbox-3,” Perception, 36, No. 14, 1–16 (2007).Google Scholar
  33. 33.
    M. B. Kennel, R. Brown, and H. D. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A, 45, No. 6, 3403–3411 (1992).CrossRefGoogle Scholar
  34. 34.
    A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A Gen. Phys., 33, No. 2, 1134–1140 (1986).CrossRefGoogle Scholar
  35. 35.
    U. R. Acharya, F. Molinari, S. V. Sree, et al., “Automated diagnosis of epileptic EEG using entropies, biomedical signal processing and control,” Biomed. Sign. Proc. Contr., 7, No. 4, 401–408 (2012).CrossRefGoogle Scholar
  36. 36.
    M. Yang, K. Kpalma, and J. Ronsin, “A survey of shape feature extraction techniques,” in: Pattern Recognition IN-TECH (Y. Peng-Yeng, Ed.), pp. 43–90 2008.Google Scholar
  37. 37.
    S. Loncarical, “A survey of shape analysis techniques,” Pattern Recogn., 31, No. 8, 983–1001 (1998); doi:  https://doi.org/10.1016/S0031-2023(97)00122-2.CrossRefGoogle Scholar
  38. 38.
    D. Zhang and G. Lu, “Review of shape representation and description techniques,” Pattern Recogn., 37, No. 1, 1–19 (2004); doi:  https://doi.org/10.1016/j.patcog.2003.07.008.CrossRefGoogle Scholar
  39. 39.
    M. Peura and J. Iivarinen, “Efficiency of simple shape descriptors,” In: Advances in Visual Form Analysis (C. Arcelli, L. P. Cordella, and G. S. Baja, Eds.), World Scientific, Singapore (1997), pp. 443-451.Google Scholar
  40. 40.
    B. Obermaier, C. Neuper, C. Guger, and G. Pfurtscheller, “Information transfer rate in a five-classes braincomputer interface,” IEEE Transact. Neural Syst. Rehab. Eng., 9, No. 3, 283–288 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Z. Soroush
    • 1
    • 2
    Email author
  • K. Maghooli
    • 1
  • N. F. Pisheh
    • 3
  • M. Mohammadi
    • 1
  • P. Z. Soroush
    • 4
  • P. Tahvilian
    • 1
  1. 1.Department of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Department of Biomedical Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran
  4. 4.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations