Advertisement

Neurophysiology

, Volume 51, Issue 3, pp 171–179 | Cite as

Taurine Prevents Passive Avoidance Memory Impairment, Accumulation of Amyloid-β Plaques, and Neuronal Loss in the Hippocampus of Scopolamine-Treated Rats

  • S. Gorgani
  • M. JahanshahiEmail author
  • L. Elyasi
Article
  • 17 Downloads

One of the hallmarks of Alzheimer’s disease (AD) is extracellular deposition of amyloid-β peptides, particularly in the hippocampus. Despite the antioxidant properties of taurine, its neuroprotective potential against amyloid-β accumulation in scopolamine-induced AD model remain unclear. In such a model, we aimed to assess the effects of taurine on passive avoidance memory impairment, accumulation of congophilic amyloid-β plaques, and neuronal density in the rat hippocampus. Rats, except the control group, were i.p. injected with 3 mg/kg scopolamine. The pretreated and treated groups were also injected with taurine (25, 50, or 100 mg/kg/day, i.p.) for 14 days before or after scopolamine introduction. All rats (except the control group) were tested for the passive avoidance reaction 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with Congo red and cresyl violet. Administration of taurine for 14 days, both before and after scopolamine injection, significantly alleviated passive avoidance memory impairment. Pretreatment with taurine in any of the mentioned dosages significantly decreased the number of congophilic amyloid-β plaques in the rat hippocampus, including the CA3 area. Taurine also reduced scopolamine-induced neuronal loss in the hippocampus.

Keywords

Alzheimer’s disease (AD) scopolamine hippocampus amyloid-β (Aβ) plaques neuronal density avoidance reaction taurine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. H. Choi, S. Aid, L. Caracciolo, et al., “Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease,” J. Neurochem.,124, 59–68 (2013).CrossRefGoogle Scholar
  2. 2.
    P. Xu, K. Wang, C. Lu, et al., “Protective effects of linalool against amyloid beta-induced cognitive deficits and damages in mice,” Life Sci.,174, 21–27 (2017).CrossRefGoogle Scholar
  3. 3.
    H. Javed, A. Khan, K. Vaibhav, et al., “Taurine amelio- rates neurobehavioral, neurochemical and immunohistochemical changes in sporadic dementia of Alzheimer’s type (SDAT) caused by intracerebroventricular streptozotocin in rats,” Neurol. Res.,34, 2181–2192 (2013).Google Scholar
  4. 4.
    X. Li, H. F. Yuan, Q. K. Quan, et al., “Scavenging effect of Naoerkang on amyloid beta-peptide deposition in the hippocampus in a rat model of Alzheimer’s disease,” Chin. J. Integr. Med.,17, 847–853 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Goverdhan, A. Sravanthi, and T. Mamatha, “Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress,” Int. J. Alzheimers Dis.,2012, 974013; doi:  https://doi.org/10.1155/2012/974013. (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    M. C. Chung, P. Malatesta, P. L. Bosquesi, et al., “Advances in drug design based on the amino acid approach: Taurine analogues for the treatment of CNS diseases,” Pharmaceuticals,5, 1128–1146 (2012).CrossRefGoogle Scholar
  7. 7.
    Q. Sun, H. Hu, W. Wang, et al., “Taurine attenuates amyloid β1-42-induced mitochondrial dysfunction by activating of SIRT1 in SK-N-SH cells,” Biochem. Biophys. Res. Commun.,447, 485–489 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Blokland, A. Sambeth, J. Prickaerts, and W. J.Riedel, “Why an M1 antagonist could be a more selective model for memory impairment than scopolamine,” Front. Neurol.,7, 167 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Y. Choi, Y. J. Lee, S. Y. Lee, et al., “Attenuation of scopolamine-induced cognitive dysfunction by obovatol,” Arch. Pharm. Res.,35, 1279–1286 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Jahanshahi, E. G. Nickmahzar, and F. Babakordi, “The effect of Ginkgo biloba extract on scopolamineinduced apoptosis in the hippocampus of rats,” Anat. Sci. Int.,88, 217–222 (2013).CrossRefGoogle Scholar
  11. 11.
    G. Caletti, D. B. Olguins, E. F. Pedrollo, et al., “Antidepressant effect of taurine in diabetic rats,” Amino Acids,43, 1525–1533 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Seifhosseini, M. Jahanshahi, A. Moghimi, and N. S. Aazami, “The effect of scopolamine on avoidance memory and hippocampal neurons in male wistar rats,” Basic Clin. Neurosci.,3, 9–15 (2011).Google Scholar
  13. 13.
    S. Mahakizadeh, M. Jahanshahi, K. Haidari, and M. Shahbazi,“Dopamine receptors gene expression in male rat hippocampus after administration of MDMA (Ecstasy),” Int. J. Morphol.,33, 301–308 (2015).CrossRefGoogle Scholar
  14. 14.
    G. Paxinos, and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (2007).Google Scholar
  15. 15.
    D. M. Wilcock, M.N. Gordon, and D. Morgan, “Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo Red histochemical stain,” Nat. Protoc.,1, 1591–1595 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Jahanshahi, K. Haidari, S. Mahaki-Zadeh, et al., “Effects of repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) on avoidance memory and cell density in rats’ hippocampus,” Basic Clin. Neurosci.,4, 57–63 (2013).PubMedPubMedCentralGoogle Scholar
  17. 17.
    E. Nikmahzar, M. Jahanshahi, A. Ghaemi, et al., “Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice,” Anat. Cell Biol.,49, 259–272 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Jahanshahi, Y. Sadeghi, and A. Hosseini, “Estimation of astrocyte number in different subfield of rat hippocampus,” Pak. J. Biol. Sci.,9, 1595–1597 (2006).CrossRefGoogle Scholar
  19. 19.
    J. J. Buccafusco,“The revival of scopolamine reversal for the assessment of cognitive-enhancing drugs,” in: Methods of Behavior Analysis in Neuroscience, J. J. Buccafusco (ed.), CRC Press, Boca Raton (2009), pp. 230–329.Google Scholar
  20. 20.
    A. C. G. Souza, C. A. Bruning, C. I. Acker, et al., “2-Phenylethynyl- butyltellurium enhances learning and memory impaired by scopolamine in mice,” Behav. Pharmacol.,24, 249–254 (2013).CrossRefGoogle Scholar
  21. 21.
    J. M. Gutierres, F. B. Carvalho, M. R. C. Schetinger, et al., “Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamineinduced amnesia in rats,” Int. J. Dev. Neurosci.,33, 88–97 (2014).CrossRefGoogle Scholar
  22. 22.
    J. S. Lee, S. S. Hong, H. G. Kim, et al.,“Gongjin-dan enhances hippocampal memory in a mouse model of scopolamine-induced amnesia,” PLoS One,11, e0159823 (2016).CrossRefGoogle Scholar
  23. 23.
    A. El Idrissi, “Taurine improves learning and retention in aged mice,” Neurosci. Lett.,436, 19–22 (2008).CrossRefGoogle Scholar
  24. 24.
    H. Y. Kim, H. V. Kim, J. H. Yoon, et al., “Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease,” Sci. Rep.,4, 7467 (2014).CrossRefGoogle Scholar
  25. 25.
    S. F. El-Sisi, “The possible protective effect of mefenamic acid, taurine, soy-phytoestrogen extract against scopolamine induced Alzheimer disease in rat,” New York Sci. J.,4, 89–101 (2011).Google Scholar
  26. 26.
    M. G. Akande, Y. O. Aliu, S. F. Ambali, and J. O. Ayo, “Taurine mitigates cognitive impairment induced by chronic co-exposure of male Wistar rats to chlorpyrifos and lead acetate,” Environ. Toxicol. Pharmacol.,37, 315–325 (2014).CrossRefGoogle Scholar
  27. 27.
    I. A. Adedara, A. O. Abolaji, U. F. Idris, et al., “Neuroprotective influence of taurine on fluorideinduced biochemical and behavioral deficits in rats,” Chem. Biol. Interact.,261, 1–10 (2017).CrossRefGoogle Scholar
  28. 28.
    K. Ito, M. Arko, T. Kawaguchi, et al., “The effect of subacute supplementation of taurine on spatial learning and memory,” Exp. Anim.,58, 175–180 (2009).CrossRefGoogle Scholar
  29. 29.
    K. Ito, M. Arko, T. Kawaguchi, et al., “Intracerebroventricular administration of taurine impairs learning and memory in rats,” Nutr. Neurosci.,15, 70–77 (2012).CrossRefGoogle Scholar
  30. 30.
    K. M. Rodrigue, K. M. Kennedy, M. D. Devous, et al., “β-Amyloid burden in healthy aging regional distribution and cognitive consequences,” Neurology,78, 387–395 (2012).CrossRefGoogle Scholar
  31. 31.
    S. W. Bihaqi, A. P. Singh, and M. Tiwari, “Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain,” Ind. J. Pharmacol.,44, 593–598 (2012).CrossRefGoogle Scholar
  32. 32.
    I. Santa-María, F. Hernández, F. J. Moreno, and J. Avila, “Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation,” Neurosci. Lett.,429, 91–94 (2007).CrossRefGoogle Scholar
  33. 33.
    P. R. Louzada, L. A. C. Paula, D. L. Mendonca-Silva, et al., “Taurine prevents the neurotoxicity of betaamyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders,” FASEB J.,18, 511–518 (2004).CrossRefGoogle Scholar
  34. 34.
    A. C. Paula-Lima, F. G. De Felice, J. Brito-Moreira, and S. T. Ferreira, “Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of β-amyloid in rat hippocampal and cortical neurons,” Neuropharmacology,49, 1140–1148 (2005).CrossRefGoogle Scholar
  35. 35.
    F. Gervais, J. Paquette, C. Morissette, et al., “Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis,” Neurobiol. Aging,28, 537–547 (2007).CrossRefGoogle Scholar
  36. 36.
    P. E. Fraser, J. T. Nguyen, D. T. Chin, and D. A. Kirschner, “Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: implications for amyloid fibrilproteoglycan interactions,” J. Neurochem.,59, 1531–1540 (1992).CrossRefGoogle Scholar
  37. 37.
    R. Hernández-Benítez, H. Pasantes-Morales, I. T. Saldaña, and G. Ramos-Mandujano, “Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells,” J. Neurosci. Res.,88, 1673–1681 (2010).PubMedGoogle Scholar
  38. 38.
    M. C. Shivaraj, G. Marcy, G. Low, et al., “Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain,” PLoS One,7, e42935 (2012).CrossRefGoogle Scholar
  39. 39.
    R. Hernández-Benítez, S. D. Vangipuram, G. Ramos-Mandujano, et al., “Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification,” Dev. Neurosci.,35, 40–49 (2013).CrossRefGoogle Scholar
  40. 40.
    E. Gebara, F. Udry, S. Sultan, and N. Toni, “Taurine increases hippocampal neurogenesis in aging mice,” Stem Cell Res.,14, 369–379 (2015).CrossRefGoogle Scholar
  41. 41.
    G. Ramos-Mandujano, R. Hernández-Benítez, and H. Pasantes-Morales, “Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse,” Stem Cell Res.,12, 690–702 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neuroscience Research Center, Department of Anatomy, Faculty of MedicineGolestan University of Medical SciencesGorganIran

Personalised recommendations