Advertisement

Neurophysiology

, Volume 51, Issue 3, pp 152–159 | Cite as

Possible Stochastic Mechanism for Improving the Selectivity of Olfactory Projection Neurons

  • A. K. VidybidaEmail author
Article

A possible mechanism that provides increased selectivity of olfactory bulb projection neurons, as compared to that of the primary olfactory receptor neurons, has been proposed. The mechanism operates at low concentrations of the odor molecules, when the lateral inhibition mechanism becomes inefficient. The mechanism proposed is based on a threshold-type reaction to the stimuli received by a projection neuron from a few receptor neurons, the stochastic nature of these stimuli, and the existence of electrical leakage in the projection neurons. The mechanism operates at the level of the single individual projection neuron and does not require the involvement of other bulbar neurons.

Keywords

odors olfactory bulb olfactory receptor neurons projection neurons spike activity selectivity stochastic process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Ressler, S. L. Sullivan, and L. B. Buck, “Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb,” Cell, 79, 1245–1255 (1994).PubMedCrossRefGoogle Scholar
  2. 2.
    V. W. Drongelen, “Unitary recordings of near threshold responses of receptor cells in the olfactory mucosa of the frog,” J. Physiol., 277, No. 1, 423–435 (1978).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    V. W. Drongelen, A. Holley, and K. B. Døving, “Convergence in the olfactory system: Quantitative aspects of odour sensitivity,” J. Theor. Biol., 71, No. 1, 39–48 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Duchamp-Viret, A. Duchamp, and M. Vigoroux, “Amplifying role of convergence in olfactory system. A comparative study of receptor cell and second-order neuron sensitivities,” J. Neurophysiol., 61, No. 5, 1085–1094 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Duchamp, “Electrophysiological responses of olfactory bulb neurons to odour stimuli in the frog. A comparison with receptor cells,” Chem. Senses,7, No. 2, 191–210 (1982).CrossRefGoogle Scholar
  6. 6.
    S. Kikuta, M. L. Fletcher, R. Homma et al., “Odorant response properties of individual neurons in an olfactory glomerular module,” Neuron, 77, No. 6, 1122–1135 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    A. P. Davison, J. Feng, and D. Brown, “Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model,” J. Neurophysiol., 90, No. 3, 1921–1935 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    T. A. Cleland and C. Linster, “Computation in the olfactory system,” Chem. Senses, 30, No. 9, 801–813 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Granit and J. C. Eccles, “Aspects of excitation and inhibition in the retina,” Proc. Roy. Soc. Lond. Ser. B Biol. Sci.,140, No. 899, 191–199 (1952).CrossRefGoogle Scholar
  10. 10.
    H. B. Barlow, “Summation and inhibition in the frog’s retina,” J. Physiol.,119, No. 1, 69–88 (1953).PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    H. K. Hartline, H. G. Wagner, and F. Ratliff, “Inhibition in the eye of Limulus,” J. Gen. Physiol., 39, No. 5, 651–673 (1956).PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    M. Yokoi, K. Mori, and S. Nakanishi, “Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb,” Proc. Natl. Acad. Sci. USA,92, No. 8, 3371–3375 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    N. N. Urban and B. Sakmann, “Reciprocal intra glomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells,” J. Physiol., 542, No. 2, 355–367 (2002).PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron,59, No. 5, 802–814 (2008).PubMedCrossRefGoogle Scholar
  15. 15.
    M. T. Valley and S. Firestein, “A lateral look at olfactory bulb lateral inhibition,” Neuron,59, No. 5, 682–684 (2008).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Duchamp-Viret, A. Duchamp, and G. Sicard, “Olfac tory discrimination over a wide concentration range. Compa rison of receptor cell and bulb neuron abilities,” Brain Res., 517, Nos. 1–2, 256-262 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    A. K. Vidybida, “Selectivity of chemoreceptor neuron,” BioSystems,58, 125–132 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    A. K. Vidybida, A. S. Usenko, and J. P. Rospars, “Selectivity improvement in a model of olfactory receptor neuron with adsorption-desorption noise,” J. Biol. Syst., 16, No. 4, 531–545 (2008).CrossRefGoogle Scholar
  19. 19.
    A. K. Vidybida, “Adsorption–desorption noise can be used for improving selectivity,” Sensors Actuators A:Physical., 107, No. 3, 233–237 (2003).CrossRefGoogle Scholar
  20. 20.
    V. S. Korolyuk, P. G. Kostyuk, B. Ya. Pjatigorskii, and E. P. Tkachenko, “Mathematical model of spontaneous activity of some neurons in the CNS,” Biofizika,12, No. 5, 895–899 (1967).Google Scholar
  21. 21.
    L. F. Abbott, “Lapique’s introduction of the integrateand- fire model neuron (1907),” Brain Res. Bull., 50, Nos. 5/6, 303–304 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    L. B. Buck, “The molecular architecture of odor and pheromone sensing in mammals,” Cell,100, No. 6, 611–618 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    A. K. Vidybida, Stochastic Models, NAS of Ukraine, BITP, Kyiv (2006).Google Scholar
  24. 24.
    J. N. Bourne and N. E. Schoppa, “Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli,” J. Comp. Neurol., 525, No. 3, 592–609 (2017).PubMedCrossRefGoogle Scholar
  25. 25.
    S. D. Burton and N. N. Urban, “Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells,” J. Physiol., 592, No. 10, 2097–2118 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    J. Tan, A. Savigner, M. Ma, and M. Luo, “Odor information processing by the olfactory bulb analyzed in gene-targeted mice,” Neuron,65, No. 6, 912–926 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    K. Mori, M. C. Nowycky, and G. M. Shepherd, “Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb,” J. Physiol., 314, No. 1, 281–294 (1981).PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    R. J. Sayer, M. J. Friedlander, and S. J. Redman, “The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice,” J. Neurosci., 10, No. 3, 826–836 (1990).PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    A. Duchamp and G. Sicard, “Influence of stimulus intensity on odour discrimination by olfactory bulb neurons as compared with receptor cells,” Chem. Senses,8, No. 4, 355–366 (1984).CrossRefGoogle Scholar
  30. 30.
    P. Duchamp-Viret, and A. Duchamp, “Odor processing in the frog olfactory system,” Prog. Neurobiol., 53, No. 5, 561–602 (1997).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Lowe and G. H. Gold, “Olfactory transduction is intrinsically noisy,” Proc. Natl. Acad. Sci. USA, 92, No. 17, 7864–7868 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    J. P. Rospars, P. Lánský, J. Vaillant, et al., “Spontaneous activity of first- and second-order neurons in the frog olfactory system,” Brain Res.,662, Nos. 1–2, 31–44 (1994).PubMedCrossRefGoogle Scholar
  33. 33.
    V. Bhandawat, G. Maimon, M. H. Dickinson, and R. J. Wilson, “Olfactory modulation of flight in Drosophila is sensitive, selective and rapid,” J. Exp. Biol., 213, No. 21, 3625 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    M. Häusser, N. Spruston, and G. J. Stuart, “Diversity and dynamics of dendritic signaling,” Science,290, No. 5492, 739–744 (2000).PubMedCrossRefGoogle Scholar
  35. 35.
    M. London and M. Häusser, “Dendritic computation,” Ann. Rev. Neurosci., 28, No. 1, 503–532 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    J. P. Rospars, A. Grémiaux, D. Jarriault, et al., “Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of secondorder neurons,” PLOS Comput. Biol., 10, No. 12 (2014): e1003975.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    J. P. McGann. Presynaptic inhibition of olfactory sensory neurons: New mechanisms and potential functions,” Chem. Senses,38, No. 6, 459–474 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    P. M. Lledo, G. Gheusi, and J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev., 85, No. 1, 281–317 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical PhysicsNAS of UkraineKyivUkraine

Personalised recommendations