, Volume 51, Issue 2, pp 97–106 | Cite as

Effects of Neonatal Administration of Memantine on Hippocampal Asymmetry and Working Memory Impairment Induced by Early Maternal Deprivation in Rats

  • E. UribeEmail author
  • L. Fernández

Schizophrenia is manifested with abnormalities in working memory and in exaggerated asymmetry of the hippocampus, basal ganglia, and temporoparietal cortex. Using an early maternal deprivation model, we evaluated brain histology and working memory at childhood, adolescence, and adulthood of the experimental animals. Incorrect patterns of brain asymmetry, which involved the striatum in childhood and adolescence and the hippocampus in adulthood were associated with clear working memory deficit. Neonatal treatment with memantine (10 mg/kg) could prevent those changes effectively. These results raise the possibility that pharmacological treatment with MEM within early developmental stages can help people with a risk to develop schizophrenia.


maternal deprivation model schizophrenia NMDA glutamate striatum hippocampus development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Lehman, J. A. Lieberman, L. B. Dixon, et al., “Practice guideline for the treatment of patients with schizophrenia (2nd edition),” Am. J. Psychiatry, 161, 1–56 (2004).CrossRefGoogle Scholar
  2. 2.
    E. Uribe, E. Sánchez-Mendoza, N. Nieves, and G. Merchor, “Neonatal administration of memantine enhances social cognition in adult rats subjected to early maternal deprivation,” Exp. Neurobiol., 25, 328–332 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Tekin and J. Cummings, “Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update,” J. Psychosom. Res., 53, 647–654 (2002).CrossRefGoogle Scholar
  4. 4.
    J. M. Fuster, “The cognit: a network model of cortical representation,” Int. J. Psychophysiol., 60, 125–132 (2006).CrossRefGoogle Scholar
  5. 5.
    S. V. Kalmady, V. Shivakumar, S. Gautham, et al., “Dermatoglyphic correlates of hippocampus volume: Evaluation of aberrant neurodevelopmental markers in antipsychotic-naïve schizophrenia,” Psychiatry Res., 234, 113–120 (2015).CrossRefGoogle Scholar
  6. 6.
    N. Okada, M. Fukunaga, F. Yamashita, et al., “Abnormal asymmetries in subcortical brain volume in schizophrenia,” Mol. Psychiatry, 21, 1460–1466 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Gruzelier, L. Wilson, D. Liddiard, et al., “Cognitive asymmetry patterns in schizophrenia: active and withdrawn syndromes and sex differences as moderators,” Schizophr. Bull., 25, 349–362 (1999).CrossRefGoogle Scholar
  8. 8.
    M. E. Shenton, R. Kikinis, F. A. Jolesz, et al., “Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study,” New Engl. J. Med., 327, 604–612 (1992).CrossRefGoogle Scholar
  9. 9.
    E. Perez-Costas, M. Melendez-Ferro, and R. C. Roberts, “Basal ganglia pathology in schizophrenia: dopamine connections and anomalies,” J. Neurochem., 113, 287–302 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Gallinat, K. McMahon, S. Kühn, et al., “Cross sectional study of glutamate in the anterior cingulate and hippocampus in schizophrenia,” Schizophr. Bull., 42, 425–433 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Butz, F. Wörgötter, and A. van Ooyen, “Activitydependent structural plasticity,” Brain. Res. Rev., 60, 287–305 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Uribe and R. Wix, “Conexión sináptica y esquizofrenia,” Neurocien. Colom., 18, 258–271 (2011).Google Scholar
  13. 13.
    E. Uribe and R. Wix, “Migración neuronal y esquizofrenia,” Neurocien. Colom., 17, 45–60 (2010).Google Scholar
  14. 14.
    M.J. Millan, A. Andrieux, G. Bartzokis, et al., “Altering the course of schizophrenia: progress and perspectives,” Nat. Rev. Drug Discov., 15, 485–515 (2016).CrossRefGoogle Scholar
  15. 15.
    D. Mier and P. Kirsch, “Social-cognitive deficits in schizophrenia,” Curr. Top. Behav. Neurosci., 3, 397–409 (2016).Google Scholar
  16. 16.
    G. Rammes, W. Danysz, and C. G. Parsons, “Pharmacodynamics of memantine: an update,” Curr. Neuropharmacol., 6, 55–78 (2008).CrossRefGoogle Scholar
  17. 17.
    V. Jeevakumar and S. Kroener, “Ketamine administration during the second postnatal week alters synaptic properties of fast-spiking interneurons in the medial prefrontal cortex of adult mice,” Cerebr. Cortex, 26, 1117–1129 (2016).CrossRefGoogle Scholar
  18. 18.
    Institute of Laboratory Animal Resources, Guide for the Care and Use of Laboratory Animals, Natl. Acad. Press, Washington, D.C. USA (2011).Google Scholar
  19. 19.
    B. Cabuk, V. Etus, S. U. Bozkurt, et al., “Neuroprotective effect of memantine on hippocampal neurons in infantile rat hydrocephalus,” Turk. Neurosurg., 21, 352–358 (2011).Google Scholar
  20. 20.
    E. Uribe, J. Landaeta, R. Wix, et al., “Memantine reverses social withdrawal induced by ketamine in rats,” Exp. Neurobiol., 22, 18–22 (2013).CrossRefGoogle Scholar
  21. 21.
    R. Deacon and N. Rawlins, “T-maze alternation in the rodent,” Nat. Protoc., 1, 7–12 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Dodell-Feder, L. M. Tully, and C. I. Hooker, “Social impairment in schizophrenia: new approaches for treating a persistent problem,” Curr. Opin. Psychiatry, 28, 236–242 (2015).CrossRefGoogle Scholar
  23. 23.
    E. Uribe and R. Wix, “Epigenetic control of the GABAergic interneurons migration and NMDA receptor functioning in schizophrenia,” eNeurobiología, 2, 1–13 (2011).Google Scholar
  24. 24.
    K. E. Watkins, T. Paus, J.P. Lerch, et al., “Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans,” Cerebr. Cortex, 11, 868–877 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Roceri, W. Hendriks, G. Racagni, et al., “Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus,” Mol. Psychiatry, 7, 609–616 (2002).CrossRefGoogle Scholar
  26. 26.
    A. Allen, M. Griss, B. Folley, et al., “Endophenotypes in schizophrenia: A selective review,” Schizophr. Res., 109, 24–37 (2009).CrossRefGoogle Scholar
  27. 27.
    M. Mizuno, “Neuropsychological characteristics of right hemisphere damage: investigation by attention tests, concept formation and change test, and self-evaluation task,” Keio J. Med., 40, 221–234 (1991).CrossRefGoogle Scholar
  28. 28.
    S. Raffard, S. Bayard, M.C. Gely-Nargeot, et al., “Insight and executive functioning in schizophrenia: a multidimensional approach,” Psychiatry Res., 167, 239–250 (2009).CrossRefGoogle Scholar
  29. 29.
    D. Fareri, L. Gabard-Durnam, B. Goff, et al., “Normative development of ventral striatal resting state connectivity in humans,” NeuroImage, 118, 422–437 (2015).CrossRefGoogle Scholar
  30. 30.
    A. Holmén, M. Juuhl-Langseth, R. Thormodsen, et al., “Executive function in early- and adult onset schizo- phrenia,” Schizophr. Res., 142, 177–182 (2012).CrossRefGoogle Scholar
  31. 31.
    D. Sturman and B. Moghaddam, “Striatum processes reward differently in adolescents versus adults,” Proc. Natl. Acad. Sci. USA, 109, 1719–1724 (2012).CrossRefGoogle Scholar
  32. 32.
    A. E. Guyer, E. E. Nelson, K. Perez-Edgar, et al., “Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition,” J. Neurosci., 26, 6399–6405 (2006).CrossRefGoogle Scholar
  33. 33.
    O. D. Howes, A. J. Montgomery, M. C. Asselin, et al., “Elevated striatal dopamine function linked to prodromal signs of schizophrenia,” Arch. Gen. Psychiatry, 66, 13–20 (2009).CrossRefGoogle Scholar
  34. 34.
    C. Zhao, J. Zhu, X. Liu, et al., “Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 83, 27–32 (2018).CrossRefGoogle Scholar
  35. 35.
    J. Lee and S. Park, “Working memory impairments in schizophrenia: a meta-analysis,” J. Abnorm. Psychol., 114, 599–611 (2005).CrossRefGoogle Scholar
  36. 36.
    R. D. Oades, “Frontal, temporal and lateralized brain functions in children with attention-deficit hyperactivity disorder: a psychophysiological and neuropsychological viewpoint on development,” Behav. Brain. Res., 94, 83–95 (1998).CrossRefGoogle Scholar
  37. 37.
    F. Darki and T. Klingberg, “The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study,” Cerebr. Cortex, 25, 1587–1595 (2015).CrossRefGoogle Scholar
  38. 38.
    E. Uribe, “Neuropsychological subtypes of schizophrenia and prefrontal circuits,” eNeurobiología., 7, 280516 (2016).Google Scholar
  39. 39.
    Y. Huang, A. Matysiak, P. Heil, et al., “Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates,” Elife, 20, 5. pii: e15441 (2016).Google Scholar
  40. 40.
    T. R. Barrick, I. N. Lawes, C. E. Mackay, et al., “White matter pathway asymmetry underlies functional lateralization,” Cerebr. Cortex, 17, 591–598 (2007).CrossRefGoogle Scholar
  41. 41.
    Y. Wei, M. Chang, F. Y. Womer, et al., “Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder,” J. Affect. Disord., 236, 266–273 (2018).CrossRefGoogle Scholar
  42. 42.
    R. Wix-Ramos, X. Moreno, E. Capote, et al., “Drug treated schizophrenia, schizoaffective and bipolar disorder patients evaluated by qEEG absolute spectral power and mean frequency analysis,” Clin. Psychopharmacol. Neurosci., 12, 48–53 (2014).CrossRefGoogle Scholar
  43. 43.
    E. Uribe, L. Fernandez, D. Pacheco, et al., “Administration of memantine reverses behavioral, histological, and electrophysiological abnormalities in rats subjected to early maternal deprivation,” J. Neural Transm. (Vienna), 126, No. 6, 759–770 (2019).Google Scholar
  44. 44.
    R. Ross, K. Sherrill, and C. Stern, “The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making,” Brain Res., 1423, 53–66 (2011).CrossRefGoogle Scholar
  45. 45.
    S. J. Arnold, E. I. Ivleva, T. A. Gopal, et al., “Hippocampal volume is reduced in schizophrenia and schizoaffective disorder but not in psychotic bipolar I disorder demonstrated by both manual tracing and automated parcellation (Free Surfer),” Schizophr. Bull., 41, 233–249 (2015).CrossRefGoogle Scholar
  46. 46.
    R. Khalaf-Nazzal and F. Francis, “Hippocampal development – old and new findings,” Neuroscience, 248, 225–242 (2013).CrossRefGoogle Scholar
  47. 47.
    S. Heckers, “Neuroimaging studies of the hippocampus in schizophrenia,” Hippocampus, 11, 520–528 (2001).CrossRefGoogle Scholar
  48. 48.
    E. Uribe and R. Wix, “Neuronal migration, apoptosis and bipolar disorder,” Rev. Psiquiat. Salud. Ment., 5, 127–133 (2012).CrossRefGoogle Scholar
  49. 49.
    J. A. Lieberman, R. R. Girgis, G. Brucato, et al., “Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention,” Mol. Psychiatry, 23, 1764–1772 (2018).CrossRefGoogle Scholar
  50. 50.
    C. J. Herold, M. M. Lässer, L. A. Schmid, et al., “Neuropsychology, autobiographical memory, and hippocampal volume in “younger” and “older” patients with chronic schizophrenia,” Front. Psychiatry, 21, 6–53 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de biofísica y neurociencia de la Universidad de CaraboboCaraboboVenezuela
  2. 2.Universidad de CaraboboCaraboboVenezuela

Personalised recommendations