Advertisement

Effects of Prenatal Seizures on Cognitive and Motor Performance in Mice Offspring (with Emphasis on BDNF and GDNF Levels)

  • A. SabaghiEmail author
  • A. Heirani
  • A. Kiani
  • N. Yosofvand
Article
  • 3 Downloads

Prenatal seizures in a mother’s organism exert adverse effects on offspring. We investigated the effects of exposure to prenatal seizures in utero on the motor coordination and cognitive performance of mice offspring. Considering that brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) play important roles in providing motor and learning abilities, the levels of these factors in serum of the offspring were measured. Adult female ICR mice were randomly separated into two groups and injected i.p. with either pentylenetetrazole (PTZ) or saline for 30 days. Then fully kindled mice and control animals were allowed to mate; PTZ administration was continued until delivery, while the control group received saline at the same time. The motor coordination and cognitive performance shown by male offspring of the groups were evaluated using the raised-beam task and novel object recognition task (NORT), respectively .The serum BDNF and GDNF levels in offspring were measured 24 h after the completion of the behavioral tests. Prenatal exposure to maternal seizures induced by PTZ led to a motor coordination deficiency, significant cognitive impairment, a decrease in the serum BDNF level, and an increase in the GDNF level in adult male offspring (P < 0.05 in all cases). These findings suggest that seizures during mother’s pregnancy cause strong cognitive deficiency and disorders of motor coordination mostly due to alteration of the BDNF and GDNF level in adult male offspring.

Keywords

mice PTZ-induced seizures pregnancy offspring motor coordination cognitive performance BDNF GDNF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. H. Lee, B. Y. Choi, J. H. Kim, et al., “Late treatment with choline alfoscerate (l-alpha glyceryl-phosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizureinduced neuronal death and cognitive impairment,” Brain Res., 1, No. 1654, Part A, 66-76 (2017).Google Scholar
  2. 2.
    E. M. Goldberg and D. A. Coulter, “Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction,” Nat. Rev. Neurosci., 14, 337-349 (2013).Google Scholar
  3. 3.
    T. Tomson and V. Hiilesmaa, “Epilepsy in pregnancy,” BMJ, 335, 769-773 (2007).Google Scholar
  4. 4.
    K. Abe, H. Hamada, T. Yamada, et al., “Impact of planning of pregnancy in women with epilepsy on seizure control during pregnancy and on maternal and neonatal outcomes,” Seizure, 23, No. 2, 112-116 (2014).Google Scholar
  5. 5.
    N. Adab, U. Kini, J. Vinten, et al., “The longer term outcome of children born to mothers with epilepsy,” J. Neurol. Neurosurg. Psychiat., 75, 1575-1583 (2004).Google Scholar
  6. 6.
    M. A. Hossain, “Molecular mediators of hypoxic–ischemic injury and implications for epilepsy in the developing brain,” Epilepsy Behav., 7, 204-213 (2005).Google Scholar
  7. 7.
    T. G. Vale, A. V. Silva, D. C. Lima, et al., “Seizures during pregnancy modify the development of hippocampal interferons of the offspring,” Epilepsy Behav., 19, 20-25 (2010).Google Scholar
  8. 8.
    A. C. Cossa, D. C. Lima, T. G. do Vale, et al., “Maternal seizures can affect the brain developing of offspring,” Metab Brain Dis., 31, No. 4, 891-900 (2016).Google Scholar
  9. 9.
    A. Rajabzadeh, A. E. Bideskan, A. Fazel, et al., “The effect of PTZ-induced epileptic seizures on hippocampal expression of PSA-NCAM in offspring born to kindled rats,” J. Biomed. Sci., 31, 19:56 (2012).Google Scholar
  10. 10.
    A. Pourmotabbed, S. E. Nedaei, M. Cheraghi, et al., “Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring,” Neuroscience, 172, 205-211 (2011).Google Scholar
  11. 11.
    T. Xie, W. P. Wang, L. J. Jia, et al., “Environmental enrichment restores cognitive deficits induced by prenatal maternal seizure,” Brain Res., 27, No, 1470, 80-88 (2012).Google Scholar
  12. 12.
    D. C. Lima, T. G. Vale, G. A. Arganãraz, et al., “Behavioral evaluation of adult rats exposed in utero to maternal epileptic seizures,” Epilepsy Behav., 18, Nos. 1/2, 45-49 (2010).Google Scholar
  13. 13.
    J. Siuda, M. Patalong-Ogiewa, W. Żmuda, et al., “Cognitive impairment and BDNF serum levels,” Neurol. Neurochir. Pol., 51, No. 1, 24-32 (2017).Google Scholar
  14. 14.
    L. F. Lin, D. H. Doherty, J. D. Lile, et al., “GDNF: a glial cell line-derived neurotrophic factor for midbrain opaminergic neurons,” Science, 260, No. 5111, 130-1132 (1993).Google Scholar
  15. 15.
    L. F. Lin, T. J. Zhang, F. Collins, and L. G. Armes, “Purification and initial characterization of rat B4 glial cell line-derived neurotrophic factor,” J. Neurochem., 63, No. 2, 758-768 (1994).Google Scholar
  16. 16.
    E. R. Kramer, L. Aron, G. M. J. Ramakers, et al., “Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system,” PLoS Biol., 5, No. 3, e39 (2007).Google Scholar
  17. 17.
    A. Pascual, M. Hidalgo-Figueroa, J. I. Piruat, et al., “Absolute requirement of GDNF for adult catechol-aminergic neuron survival,” Nat. Neurosci., 11, No. 7, 755-761 (2008).Google Scholar
  18. 18.
    H. A. Boger, L. D. Middaugh, P. Huang, et al., “A partial GDNF depletion leads to earlier age-related deterioration of motor function and tyrosine hydroxylase expression in the substantia nigra,” Exp. Neurol., 202, No. 2, 336-347 (2006).Google Scholar
  19. 19.
    W. C. Griffin 3rd, H. A. Boger, A. C. Granholm, and L. D. Middaugh, “Partial deletion of glial cell linederived neurotrophic factor (GDNF) in mice: Effects on sucrose reward and striatal GDNF concentrations,” Brain Res., 1068, No. 1, 257-260 (2006).Google Scholar
  20. 20.
    R. Gerlai, A. McNamara, D. L. Choi-Lundberg, et al., “Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation,” Eur. J. Neurosci., 14, No. 7,1153-1163 (2001).Google Scholar
  21. 21.
    M. A. Pelleymounter, M. J. Cullen, M. B. Baker, and D. Healy, “Glial cell-line derived neurotrophic factor (GDNF) improves spatial learning in aged Fisher 344 rats,” Psychobiology, 27, No. 3, 397-401 (1999).Google Scholar
  22. 22.
    B. Li, L. Wang, Z. Sun, et al., “The anticonvulsant effects of SR 57227 on pentylenetetrazole-induced seizure in mice,” PLoS One, 9, No. 4, e93158 (2014).Google Scholar
  23. 23.
    A. Becker, G. Grecksch, H. L. Ruthrich, et al., “Kindling and its consequences on learning in rats,” Behav. Neural. Biol., 57, 37-43 (1992).Google Scholar
  24. 24.
    A. A. Salari, L. Fatehi, N. Motayagheni, and J. R. Homberg, “Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring,” Behav. Brain Res., 5-62 (2016).Google Scholar
  25. 25.
    S. R. Kameda, D. F. Fukushiro, T. F. Trombin, et al., “Adolescent mice are more vulnerable than adults to single injection-induced behavioral sensitization to amphetamine,” Pharmacol. Biochem. Behav., 98, No. 2, 320-324 (2011).Google Scholar
  26. 26.
    G. T. Ngoupaye, F. B. Yassi, D. A. N. Bahane, and E. N. Bum, “Combined corticosterone treatment and chronic restraint stress lead to depression associated with early cognitive deficits in mice,” Metab. Brain Dis., 33, No. 2, 421-431 (2018).Google Scholar
  27. 27.
    M. Rabbani, V. Hajhashemi, and A. Mesripour, “Increase in brain corticosterone concentration and recognition memory impairment following morphine withdrawal in mice,” Stress, 12, No. 5, 451-456 (2009).Google Scholar
  28. 28.
    T. N. Luong, H. J. Carlisle, A. Southwell, and P. H. Patterson, “Assessment of motor balance and coordination in mice using the balance beam,” JoVE, 49, (2011).Google Scholar
  29. 29.
    D. H. Heck, Y. Zhao, S. Roy, et al., “Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors,” Human Mol. Genet., 15, No. 17(14), 2181-2189 (2008).Google Scholar
  30. 30.
    Z. Jafari, J. Mehla, B. E. Kolb, and M. H. Mohajerani, “Prenatal noise stress impairs HPA axis and cognitive performance in mice,” Sci. Rep., 5, No. 7(1), 10560 (2017).Google Scholar
  31. 31.
    J. Lajoie and S. Mosche, “Effects of seizures and their treatment on fetal brain,” Epilepsia, 45, Suppl. 8, 48-52 (2004).Google Scholar
  32. 32.
    M. P. Berzaghi, M. G. Naffah-Mazzacoratti, D. Amado, and E. A. Cavalheiro, “Effect of amygdaloid kindled seizures during pregnancy on neonatal brain biogenic amines,” Braz. J. Med. Biol. Res., 23, 827-830 (1990).Google Scholar
  33. 33.
    M. Dubovicky’, “Neurobehavioral manifestations of developmental impairment of the brain,” Interdis. Toxicol., 3, No. 2, 59-67 (2010).Google Scholar
  34. 34.
    D. J. O’Driscoll, V. D. Felice, L. C. Kenny, et al., “Mild prenatal hypoxia-ischemia leads to social deficits and central and peripheral inflammation in exposed offspring,” Brain Behav. Immunol., 69, 418-427 (2018).Google Scholar
  35. 35.
    S. H. Ali, R. M. Madhana, A. Kv, et al., “Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice,” Steroids 101, 37-42 (2015).Google Scholar
  36. 36.
    Y. Huang, H. Lai, H. Xu, et al. “Impact of perinatal systemic hypoxic–ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic–ischemic encephalopathy in early preterm newborns,” PLoS One, 8, No. 12, e82502 (2013).Google Scholar
  37. 37.
    D. Kim, C. H. Bae, Y. L. Jun, et al., “Acupuncture alters pro-inflammatory cytokines in the plasma of maternally separated rat pups,” Chin. J. Integr. Med., 23, No. 12, 943-947 (2017).Google Scholar
  38. 38.
    A. A. Kan, W. de Jager, M. de Wit, et al., “Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines,” J. Neuroinflammat., 9, 207 (2012).Google Scholar
  39. 39.
    T. Ravizza, B. Gagliardi, F. Noe, et al., “Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy,” Neurobiol. Dis., 29, No. 1, 142-160 (2008).Google Scholar
  40. 40.
    A. Zager, J. P. Peron, G. Mennecier, et al., “Maternal immune activation in late gestation increases neuro-inflammation and aggravates experimental autoimmune ncephalomyelitis in the offspring,” Brain Behav. Immunol., 43, 159-171 (2015).Google Scholar
  41. 41.
    T. B. Kirsten, L. L. Lippi, E. Bevilacqua, and M. M. Bernardi, “LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Β levels in adult rat offspring: Relevance to autism,” PLoS One, 8, No. 12, e82244 (2013).Google Scholar
  42. 42.
    D. Krstic, A. Madhusudan, J. Doehner, et al., “Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice,” J. Neuroinflammat., 9, 151 (2012).Google Scholar
  43. 43.
    F. Calabrese, A. C. Rossetti, G. Racagni, et al., “Brainderived neurotrophic factor: a bridge between inflammation and neuroplasticity,” Front. Cell Neurosci., 22, No. 8, 430 (2014).Google Scholar
  44. 44.
    M. Choo, T. Miyazaki, M. Yamazaki, et al., “Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum,” Nat. Commun., 4, No. 8(1), 195 (2017).Google Scholar
  45. 45.
    C.-W. Yeom, Y.-J. Park, S.-W. Choi, and S.-Y. Bhang, “Association of peripheral BDNF level with cognition, attention and behavior in preschool children,” Child Adolesc. Psychiat. Mental Health, 10, 10 (2016).Google Scholar
  46. 46.
    F. B. A. Cirulli, F. Chiarotti, and E. Alleva, “Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-Maze,” Hippocampus, 14, 802-807 (2004).Google Scholar
  47. 47.
    J. S. Mu, W. P. Li, Z. B. Yao, and X. F. Zhou, “Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats,” Brain Res., 835, 259-265 (1999).Google Scholar
  48. 48.
    C. Falcicchia, G. Paolone, D. F. Emerich, et al., “Seizuresuppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy. Molecular therapy,” Methods Clin. Develop., 9, No. 9, 211-224 (2018).Google Scholar
  49. 49.
    P. B. Mello-Carpes, L. da Silva de Vargas, M. C. Gayer, et al., “Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence,” Neurobiol. Learn. Memory, 127, 84-92 (2016).Google Scholar
  50. 50.
    E. K. Lucas, A. Jegarl, and R. L. Clem, “Mice lacking TrkB in parvalbumin positive cells exhibit sexually dimorphic behavioral phenotypes,” Behav. Brain Res., 274, 219-225 (2014).Google Scholar
  51. 51.
    Y. X. Li, T. Hashimoto, W. Tokuyama, et al., “Spatiotemporal dynamics of brain-derived neurotrophic factor mRNA induction in the vestibulo-olivary network during vestibular compensation,” J. Neurosci., 21, 2738-2748 (2001).Google Scholar
  52. 52.
    A. I. Chen, K. Zang, E. Masliah, and L. F. Reichardt, “Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum,” Sci. Rep., 1, No. 6, 20201 (2016).Google Scholar
  53. 53.
    M. Baydyuk and B. Xu, “BDNF signaling and survival of striatal neurons,” Front. Cell. Neurosci., 8, 254 (2014).Google Scholar
  54. 54.
    M. Porritt, D. Stanic, D. Finkelstein, et al. “Dopaminergic innervation of the human striatum in Parkinson’s disease,” Mov. Disord., 20, 810-818 (2005).Google Scholar
  55. 55.
    L. F. Razgado-Hernandez, A. J. Espadas-Alvarez, P. Reyna-Velazquez, et al., “The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease,” PLoS One, 10, No. 2, e0117391 (2015).Google Scholar
  56. 56.
    S. Janssen, C. Schlegel, V. Gudi, et al., “Effect of FTY720-phosphate on the expression of inflammationassociated molecules in astrocytes in vitro,” Mol. Med. Rep., 12, No. 4, 6171-6177 (2015).Google Scholar
  57. 57.
    L. Brambilla, G. Guidotti, F. Martorana, et al., “Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis,” Human Mol. Genet., 15, No. 14, 3080-3095 (2016).Google Scholar
  58. 58.
    A. Saavedra, G. Baltazar, and E. P. Duarte, “Driving GDNF expression: the green and the red traffic lights,” Prog. Neurobiol ., 86, No. 3, 186-215 (2008).Google Scholar
  59. 59.
    S. Ibiza, B. García-Cassani, H. Ribeiro, et al., “Glialcell-derived neuroregulators control type 3 innate lymphoid cells and gut defence,” Nature, 535, No 7612, 440-443 (2016).Google Scholar
  60. 60.
    U. Rickert, S. Grampp, H. Wilms, et al., “Glial cell linederived neurotrophic factor family members reduce microglial activation via inhibiting p38MAPKs-mediated inflammatory responses,” J. Neurodegenerat. Dis., 2014, IO 36946840 (2014).Google Scholar
  61. 61.
    L. F. Lin, D. H. Doherty, J. D. Lile, et al., “GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons,” Science, 260, No. 5111, 1130-1132 (1993).Google Scholar
  62. 62.
    J. Kopra, C. Vilenius, S. Grealish, et al., “GDNF is not required for catecholaminergic neuron survival in vivo,” Nat. Neurosci., 18, No. 3, 319-322 (2015).Google Scholar
  63. 63.
    J. J. Kopra, A. Panhelainen, S. Af Bjerkén, et al., “Dampened amphetamine-stimulated behavior and altered dopamine transporter function in the absence of brain GDNF,” J. Neurosci., 8, No. 37(6), 1581-1590 (2017).Google Scholar
  64. 64.
    P. Barroso-Chinea, I. Cruz-Muros, D. Afonso-Oramas, et al., “Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system,” Neurobiol. Dis., 88, 44-54 (2016).Google Scholar
  65. 65.
    H. A. Boger, L. D. Middaugh, K. S. Patrick, et al., “Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line derived neurotrophic factor heterozygous mice,” J. Neurosci., 27, No. 33, 8816-8825 (2007).Google Scholar
  66. 66.
    O. M. Littrell, F. Pomerleau, P. Huettl, et al., “Enhanced dopamine transporter activity in middle-aged GDNF heterozygous mice,” Neurobiol. Aging, 33 (427), e1-14 (2012).Google Scholar
  67. 67.
    C.-H. Yen, Y.-W. Yeh, C.-S. Liang, et al., “Reduced dopamine transporter availability and neurocognitive deficits in male patients with alcohol dependence,” PLoS One, 10, No. 6, e0131017 (2015).Google Scholar
  68. 68.
    J. Wang, C. T. Zuo, Y. P. Jiang, et al., “18 F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages,” J. Neurol., 254, 185-190 (2007).Google Scholar
  69. 69.
    A. Salahpour, A. J. Ramsey, I. O. Medvedev, et al., “Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter,” Proc. Natl. Acad. Sci. USA, 105, No. 11, 4405-4410 (2008).Google Scholar
  70. 70.
    E. Boudanova, D. M. Navaroli, and H. E. Melikian, “Amphetamine-induced decreases in dopamine transporter surface expression are protein kinase C-independent,” Neuropharmacology, 54, No. 3, 605-612 (2008).Google Scholar
  71. 71.
    S. T. Masoud, L. M. Vecchio, Y. Bergeron, et al., “Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and L-DOPA reversible motor deficits,” Neurobiol. Dis., 74, 66-75 (2015).Google Scholar
  72. 72.
    J. L. Labandeira-Garcia, J. Rodriguez-Pallares, A. Dominguez-Meijide, et al., “Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease,” Mov. Disord., 28, No. 10, 1337-1342 (2013).Google Scholar
  73. 73.
    E. K. Fischer and A. Drago, “A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia,” J. Neural. Transm., 124, No. 7, 765-774 (2017).Google Scholar
  74. 74.
    E. Lauretti, A. Di Meco, S. Merali, and D. Praticò, “Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson’s disease,” Transl. Psychiat., 9, No. 6, e733 (2016).Google Scholar
  75. 75.
    S. M. Underhill, D. S. Wheeler, M. Li, et al., “Amphet-amine modulates glutamatergic neurotransmission through endocytosis of the excitatory amino acid transporter EAAT3 in dopamine neurons,” Neuron, 83, No. 2, 404-416 (2014).Google Scholar
  76. 76.
    I. Ahmed, S. K. Bose, N. Pavese, et al., “Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias,” Brain, 134, Part 4, 979-986 (2011).Google Scholar
  77. 77.
    G. M. Thomsen, M. Alkaslasi, J. P. Vit, et al., “Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1G93AALS rat but has adverse side effects,” Gene Ther., 24, No. 4, 245-252 (2017).Google Scholar
  78. 78.
    L. Tenenbaum and M. Humbert-Claude, “Glial cell linederived neurotrophic factor gene delivery in Parkinson’s disease: A delicate balance between neuroprotection, trophic effects, and unwanted compensatory mechanisms,” Front. Neuroanat., 11, 29 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Sabaghi
    • 1
    Email author
  • A. Heirani
    • 1
  • A. Kiani
    • 2
  • N. Yosofvand
    • 3
  1. 1.Department of Physical Education and Sport SciencesRazi UniversityKermanshahIran
  2. 2.Pharmaceutical Sciences Research Center, School of PharmacyKermanshah University of Medical SciencesKermanshahIran
  3. 3.Department of BiologyRazi UniversityKermanshahIran

Personalised recommendations