, Volume 47, Issue 1, pp 36–39 | Cite as

Effect of Activation of the GLT-1 Transporter by a Beta-Lactam Antibiotic on Serotonin-Induced Scratching Behavior in Mice

  • O. Gunduz
  • R. D. Topuz
  • Z. G. Todurga
  • K. Duvan
  • C. H. Karadag
  • A. UlugolEmail author

Glutamate is believed to be the predominant excitatory neurotransmitter in the networks responsible for itch-related behavior. Beta-lactam antibiotics were shown to exert neuroprotective effects by increasing expression of the glutamate transporter GLT-1. We observed whether repeated administration of the beta-lactam antibiotic ceftriaxone suppresses serotonin-induced itch-related behavior (similarly to the effect of this agent on pain transmission) in mice. Chronic, but not acute, ceftriaxone introductions reduced the number of serotonin-induced scratches; dihydrokainic acid, a selective GLT-1 transporter inhibitor, partly but significantly abolished this effect of ceftriaxone. Our findings suggest that GLT-1 activation by beta-lactam antibiotics looks promising for the treatment of chronic itch.


ceftriaxone glutamate transporter GLT-1 itch serotonin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. C. Danbolt, “Glutamate uptake,” Prog. Neurobiol., 65, No. 1, 1-105 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    R. P. Seal and S. G. Amara, “Excitatory amino acid transporters: A family in flux,” Annu. Rev. Pharmacol., 39, 431-456 (1999).CrossRefGoogle Scholar
  3. 3.
    J. D. Rothstein, S. Patel, and M. R. Regan, et al., “Betalactam antibiotics offer neuroprotection by increasing glutamate transporter expression,” Nature, 433, No. 7021, 73-77 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    S. M. Rawls, M. Zielinski, H. Patel, et al., “Beta-lactam antibiotic reduces morphine analgesic tolerance in rats through GLT-1 transporter activation,” Drug Alcohol Dependence, 107, Nos. 2/3, 261-263 (2010).CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    O. Gunduz, C. Oltulu, D. Buldum, et al., “Antiallodynic and anti-hyperalgesic effects of ceftriaxone in streptozocin-induced diabetic rats,” Neurosci. Lett., 491, No. 1, 23-25 (2011).CrossRefPubMedGoogle Scholar
  6. 6.
    O. Gunduz, C. Oltulu, and A. Ulugol, “Role of GLT-1 transporter activation in prevention of cannabinoid tolerance by the beta-lactam antibiotic, ceftriaxone, in mice,” Pharmacol. Biochem. Behav., 99, No. 1, 100-103 (2011).CrossRefPubMedGoogle Scholar
  7. 7.
    A. Ulugol, “Reduction of dependence to cannabinoids by GLT-1 activating property of the beta-lactam antibiotic,” Med. Hypoth., 80, No. 3, 247-248 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. Hu, W. Li, L. Lu, et al., “An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats,” Pain, 148, No. 2, 284-301 (2010).CrossRefPubMedGoogle Scholar
  9. 9.
    V. L. Rao, K. K. Bowen, and R. J. Dempsey, “Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain,” Neurochem. Res., 26, No. 5, 497-502 (2001).CrossRefPubMedGoogle Scholar
  10. 10.
    S. E. Ross, “Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease,” Current Opin. Neurobiol., 2, No. 6, 880-887 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Schmelz, “Itch and pain,” Neurosci. Biobehav. Rev., 34, No. 2, 171-176 (2010).CrossRefPubMedGoogle Scholar
  12. 12.
    K. Koga, T. Chen, X.-Y. Li, et al., “Glutamate acts as a neurotransmitter for gastrin releasing peptide-sensitive and insensitive itch-related synaptic transmission in mammalian spinal cord,” Mol. Pain, 7, 47 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    T. Andoh, Y. Gotoh, and Y. Kuraishi, “Milnacipran ınhibits ıtch-related responses in mice through the enhancement of noradrenergic transmission in the spinal cord,” J. Pharmacol. Sci., 123, No. 2, 199-202 (2013).CrossRefPubMedGoogle Scholar
  14. 14.
    F. Cevikbas, M Steinhoff, and A. Ikoma, “Role of spinal neurotransmitter receptors in itch: New ınsights into therapies and drug development,” CNS Neurosci. Ther., 17, No. 6, 742-749 (2011).CrossRefPubMedGoogle Scholar
  15. 15.
    I. Karaman, G. Kizilay-Ozfidan, C. H. Karadag, and A. Ulugol, “Lack of effect of ceftriaxone, a GLT-1 transporter activator, on spatial memory in mice,” Pharmacol. Biochem. Behav., 108, 61-65 (2013).CrossRefPubMedGoogle Scholar
  16. 16.
    B. L. Xiao and A. Patapoutian, “Scratching the surface: a role of pain-sensing TRPA1 in itch,” Nat. Neurosci., 14, No. 5, 540-542 (2011).CrossRefPubMedGoogle Scholar
  17. 17.
    D. Andrew and A. D. Craig, “Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch,” Nat. Neurosci., 4, No. 1, 72-77 (2001).CrossRefPubMedGoogle Scholar
  18. 18.
    A. Ikoma, M. Steinhoff, S. Stander, et al., “The neurobiology of itch,” Nat. Rev. Neurosci., 7, No. 7, 535-547 (2006).CrossRefPubMedGoogle Scholar
  19. 19.
    S. E. Ross, A. R. Mardinly, A. E. McCord, et al., “Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice,” Neuron, 65, No. 6, 886-898 (2010).CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    M. C. Lagerstrom, K. Rogoz, B. Abrahamsen, et al., “VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and ıtch,” Neuron, 68, No. 3, 529-542 (2010).CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Y. Liu, O. Abdel Samad, L. Zhang, et al., “VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch,” Neuron, 68, No. 3, 543-556 (2010).CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • O. Gunduz
    • 1
  • R. D. Topuz
    • 1
  • Z. G. Todurga
    • 1
  • K. Duvan
    • 1
  • C. H. Karadag
    • 1
  • A. Ulugol
    • 1
    Email author
  1. 1.Department of Medical Pharmacology, Faculty of MedicineTrakya UniversityEdirneTurkey

Personalised recommendations