Neurophysiology

, Volume 46, Issue 4, pp 361–369 | Cite as

Wavelet Decomposition-Based Analysis of Mismatch Negativity Elicited by a Multi-Feature Paradigm

  • M. Najafi-Koopaie
  • H. Sadjedi
  • S. Mahmoudian
  • E. D. Farahani
  • M. Mohebbi
Article
  • 50 Downloads

In this study, event-related potentials (ERPs) collected from normally hearing subjects and elicited by a multi-feature paradigm were investigated, and mismatch negativity (MMN) was detected. Standard stimuli and five types of deviant stimuli were presented in a specified sequence, while EEG data were recorded digitally at a 1024 sec–1 sampling rate. Two wavelet analyses were compared with a traditional difference-wave (DW) method. The Reverse biorthogonal wavelet ot the order of 6.8 and the quadratic B-Spline wavelet were applied for seven-level decomposition. The sixth-level approximation coefficients were appropriate for extracting the MMN from the averaged trace. The results obtained showed that wavelet decomposition (WLD) methods extract MMN as well as a band-pass digital filter (DF). The differences of the MMN peak latency between deviant types elicited by B-Spline WLD were more significant than those extracted by the DW, DF, or Reverse biorthogonal WLD. Also, wavelet coefficients of the delta-theta range indicated good discrimination between some combinations of the deviant types.

Keywords

event-related potentials (ERPs) mismatch negativity (MMN) difference-wave (DW) band-pass digital filter (DF) wavelet decomposition (WLD) techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Näätänen, A. W. K. Gillard, and S. Mäntysalo, “Early selective-attention effect on evoked potential reinterpreted,” Acta Psychol. (Amst.), 42, 313-329 (1978).CrossRefGoogle Scholar
  2. 2.
    R. Näätänen and I. Winkler, “The concept of auditory stimulus representation in cognitive neuroscience,” Psychol. Bull., 125, 826–859 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Näätänen, P. Paavilainen, T. Rinne, and K. Alho, “The mismatch negativity (MMN) in basic research of central auditory processing: A review,” Clin. Neurophysiol., 118, 2544-2590 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Näätänen, S. Pakarinen, T. Rinne, and R. Takegata, “The mismatch negativity (MMN): towards the optimal paradigm,” Clin. Neurophysiol., 115, 140-144 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Näätänen, Attention and Brain Functions, Hillsdale, New Jersey (1992).Google Scholar
  6. 6.
    J. Sinkkonen and M. Tervaniemi, “Towards optimal recording and analysis of the mismatch negativity,” Audiol. Neurootol., 5, 235-246 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Stefanics, G. Haden, L. Balazs, et al., “Auditory temporal grouping in newborn infants,” Psychophysiology, 44, 697-702 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Burgur, U. Hoppe, P. Kummer, et al., “Waveletbased analysis of MMN responses in children,” Biomed. Technol., 52, 11-116 (2007).CrossRefGoogle Scholar
  9. 9.
    F. Cong, I. Kalyakin, H. Li, et al., “Answering six questions in extracting children’s mismatch negativity through combining wavelet decomposition and independent component analysis,” Cogn. Neurodyn., 5, 343-359 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    J. Dien, “The ERP PCA toolkit: an open source program for advanced statistical analysis of event related potential data,” J. Neurosci. Methods, 187, 138-145 (2010).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Cong, I. Kalyakin, A. Phan, et al., “Identical fits of nonnegative matrix/tensor factorization may correspond to different extracted event-related potentials,” Proc. Int. Jt. Conf. Neural Netw., 2260-2264 (2010).Google Scholar
  12. 12.
    S. Orfanadis, F. Afif, and E. Micheli-Tzanakou, “Visual evoked potentials extraction by adaptive filtering,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 968-969 (1987).Google Scholar
  13. 13.
    N. Thakor, “Adaptive filtering of evoked potentials,” IEEE Trans. Biomed. Eng., BME-33, 1085-1095 (1987).Google Scholar
  14. 14.
    E. Hamzaoui, F. Regragui, M. M. Himmi, and A. Mghari, “Visual evoked potentials’ nonlinear adaptive filtering based on three layers perceptron,” Appl. Math. Sci. (Ruse), 4, 2759-2772 (2010).Google Scholar
  15. 15.
    P. Laguna, R. Jane, O. Meste, et al., “Adaptive filter for event-related bioelectric signals using an impulse correlated reference input,” IEEE Trans. Biomed. Eng., 39, 1032-1044 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    C. A. Vaz and N. V. Thakor, “Adaptive Fourier estimation of time-varying evoked potentials,” IEEE Trans. Biomed. Eng., 36, 448-455 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    N. V. Thakor, Y. Sun, H. Rix, and P. Caminal, “Multiwave: a wavelet-based ECG data compression algorithm,” IEICE Trans. Inform. Syst., E-76D, 1462-1469 (1993).Google Scholar
  18. 18.
    S. J. Schif, A. Aldroubi, M. Unser, and S. Sato, “Fast wavelet transformation of EEG,” Electroencephalogr. Clin. Neurophysiol., 91, 442-455 (1994).CrossRefGoogle Scholar
  19. 19.
    V. J. Samar, K.P. Swartz, and M.R. Raghuveer, “Multiresolution analysis of event-related potentials by wavelet decomposition,” Brain Cogn., 27, 398-438 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    F. Cong, Y. Huang, I. Kalyakin, et al., “Frequencyresponse-based wavelet decomposition for extracting children’s mismatch negativity elicited by uninterrupted sound,” Med. Biol. Eng., 32, 205-214 (2012).CrossRefGoogle Scholar
  21. 21.
    I. Kalyakin, N. Gonzalez, J.Joutsensalo, et al., “Optimal digital filtering versus difference wave on the mismatch negativity in an interrupted sound paradigm,” Dev. Neuropsychol., 31, 429-452 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Picton, C. Alain, L. Otten, et al., “Mismatch negativity: different water in the same river,” Audiol. Neurootol., 5, 111-139 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Tervaniemi, A. Lehtokoski, J. Sinkkonen, et al., “Testretest reliability of mismatch negativity for duration, frequency and intensity changes,” Clin. Neurophysiol., 110, 1388-1393 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Grossman and J. Morlet, “Decomposition of hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal., 15, 723-736 (1984).CrossRefGoogle Scholar
  25. 25.
    S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693 (1989).CrossRefGoogle Scholar
  26. 26.
    T. Demiralp, Y. Istefanopulos, A. Ademoglu, et al., “Analysis of functional components of P300 by wavelet transform,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 20, 1992-1995 (1998).Google Scholar
  27. 27.
    A. Ademoglu, E. Micheli-Tzanakou, and Y. Istefanopulos, “Analysis of pattern reversal visual evoked potential (PRVEP’s) by spline wavelet,” IEEE Trans. Biomed. Eng., 44, 881-889 (1997).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Kujala, M. Tervaniemi, and E. Schröger, “The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations,” Biol. Psychol., 74, 1-19 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    H. Thönnessen, M. Zvyagintsev, K. C. Harke, et al., “Optimized mismatch negativity paradigm reflects deficits in schizophrenia patients a combined EEG and MEG study,” Biol. Psychol., 77, 205-216 (2008).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Näätänen, S. Pakarinen, T. Rinne, and R. Takegata, “The mismatch negativity (MMN): towards the optimal paradigm,” Clin. Neurophysiol., 115, 140-144 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Najafi-Koopaie
    • 1
  • H. Sadjedi
    • 1
  • S. Mahmoudian
    • 2
    • 3
  • E. D. Farahani
    • 4
  • M. Mohebbi
    • 3
  1. 1.Electronics Group, Faculty of EngineeringShahed UniversityTehranIran
  2. 2.Department of OtorhinolaryngologyHannover Medical University (MHH)HannoverGermany
  3. 3.ENT and Head and Neck Research CenterTehran University of Medical Sciences (TUMS)TehranIran
  4. 4.Biomedical Engineering FacultyAmirkabir University of TechnologyTehranIran

Personalised recommendations