Advertisement

Neurophysiology

, Volume 45, Issue 4, pp 359–367 | Cite as

Local Signalization in Dendrites and Mechanisms of Short-Term Memory

  • S. A. LebedevaEmail author
  • A. R. Stepanyuk
  • P. V. Belan
Concepts and Discussions

Traditionally, collection of information from synaptic inputs distributed on dendrites and transmission of this information to the soma of the neuron were believed to be the only functions of these neuron compartments. In recent years, such a viewpoint was revised to a considerable extent due to novel results demonstrating that the dendrites can realize the role of structural/functional units or even complexes providing independent information processing and signaling via performing local computational operations. We propose a hypothesis that a dendrite segment, due to transient changes in the excitability of its membrane (provided by processes of postpolarizations after generation of action potentials and Hebbian-type plasticity of these processes) can play the role of a structural unit of memory. Namely, such a segment can recognize, memorize, and “forecast” sequences of input signals. A high capacity of such dendritic memory unit can be provided by the locality of electrical and corresponding biochemical processes in branches of the neuronal dendrite tree. Thus, a single dendrite segment can represent the relatively independent fundamental unit for signalization and integration in the nervous system.

Keywords

dendritic signalization dendrite segment short-term memory posthyperpolarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Branco and M. Häusser, “The single dendritic branch as a fundamental functional unit in the nervous system,” Current Opin. Neurobiol., 20, No. 4, 494-502 (2010).CrossRefGoogle Scholar
  2. 2.
    P. J. Sjostrom, E. A. Rancz, A. Roth, and M. Hausser, “Dendritic excitability and synaptic plasticity,” Physiol. Rev., 88, 769-840 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Losonczy, J. K. Makara, and J. C. Magee, “Compartmentalized dendritic plasticity and input feature storage in neurons,” Nature, 452, No. 7186, 436-441 (2008).PubMedCrossRefGoogle Scholar
  4. 4.
    C. D. Harvey, R. Yasuda, H. Zhong, and K. Svoboda, “The spread of Ras activity triggered by activation of a single dendritic spine,” Science, 321, No. 5885, 136-140 (2008).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Rose, S.-X. Jin, and A. M. Craig, “Heterosynaptic molecular dynamics: locally induced propagating synaptic accumulation of CaM kinase II,” Neuron, 61, No. 3, 351-358 (2009).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Frick, J. Magee, and D. Johnston, “LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites,” Nat. Neurosci., 7, No. 2, 126-135 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    J. K. Makara, A. Losonczy, Q. Wen, and J. C. Magee, “Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons,” Nat. Neurosci., 12, No. 12, 1485-1487 (2009).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Remy, J. Csicsvari, and H. Beck, «Activity-dependent control of neuronal output by local and global dendritic spike attention,» Neuron, 61, No. 6, 906-916 (1009).CrossRefGoogle Scholar
  9. 9.
    J. Hardie and N. Spruston, “Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons,” J. Neurosci., 29, No. 10, 3233-3241 (2009).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Branco, B. A. Clark, and M. Häusser, “Dendritic discrimination of temporal input sequences in cortical neurons,” Science, 329, No. 5999, 1671-1675 (2010).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Maass and A. M. Zador, “Dynamic stochastic synapses as computational units,” Neural Comput., 11, No. 4, 903-917 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Mongillo, O. Barak, and M. Tsodyks, “Synaptic theory of working memory,” Science, 319, No. 5869, 1543-1546 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Verduzco-Flores, B. Ermentrout, and M. Bodner, “Modeling neuropathologies as disruption of normal sequence generation in working memory networks,” Neural Networks, 27, 21-31 (2012).PubMedCrossRefGoogle Scholar
  14. 14.
    M. A. Erickson, L. A. Maramara, and J. Lisman, “A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory,” J. Cognit. Neurosci., 22, No. 11, 2530-2540 (2010).CrossRefGoogle Scholar
  15. 15.
    B. Gustafsson, F. Asztely, E. Hanse, and H. Wigstrцm, “Onset characteristics of long-term potentiation in the guinea-pig hippocampal CA1 region in vitro,” Eur. J. Neurosci., 1, No. 4, 382-394 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Ganguli, D. Huh, and H. Sompolinsky, “Memory traces in dynamical systems,” Proc. Nati. Acad. Sci. USA, 105, No. 48, 18970-18975 (2008).CrossRefGoogle Scholar
  17. 17.
    P. K. Dash, A. N. Moore, N. Kobori, and J. D. Runyan, “Molecular activity underlying working memory,” Learning Memory, 14, No. 8, 554-563 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    J. M. Power and P. Sah, “Competition between calciumactivated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons,” J. Neurosci., 28, No. 12, 3209-3220 (2008).PubMedCrossRefGoogle Scholar
  19. 19.
    J. M. Fuster, “Network memory,” Trends Neurosci., 20, No. 10, 451-459 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    A. V. Egorov, B. N. Hamam, E. Fransén, and M. E. Hasselmo, “Graded persistent activity in entorhynal cortex neurons,” Nature, 420, Nov., 173-178 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    Z. Zhang and P. Séguéla, “Metabotropic induction of persistent activity in layers II/III of anterior cingulate cortex,” Cerebr. Cortex, 20, No. 12, 2948-2957 (2010).CrossRefGoogle Scholar
  22. 22.
    D. Derjean, S. Bertrand, G. Le Masson, et al., “Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states,” Nat. Neurosci., 6, No. 3, 274-281 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Major and D. Tank, “Persistent neural activity: prevalence and mechanisms,” Curr.Opin. Neurobiol., 14, No. 6, 675-684 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    W. A. Suzuki, E. K. Miller, and R. Desimone, “Object and place memory in the macaque entorhinal cortex,” J. Neurophysiol., 78, No. 2, 1062-1081 (1997).PubMedGoogle Scholar
  25. 25.
    M. E. Hasselmo and M. P. Brandon, “Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory,” Neural Plasticity, 2008 (2008).Google Scholar
  26. 26.
    D. D. Fraser and B. A. MacVicar, “Cholinergicdependent plateau potential in hippocampal CA1 pyramidal neurons,” J. Neurosci., 16, No. 13, 4113-4128 (1996).PubMedGoogle Scholar
  27. 27.
    A. Reboreda, L. Jiménez-Diaz, and J. D. Navarro-López, Transient Receptor Potential Channels, Adv. Exp. Med. Biol., Springer, 704, 595-613 (2011).CrossRefGoogle Scholar
  28. 28.
    S. Dai, D. D. Hall, and J. W. Hell, “Supramolecular assemblies and localized regulation of voltage-gated ion channels,” Physiol. Rev., 89, 411-452 (2009).PubMedCrossRefGoogle Scholar
  29. 29.
    R. G. Morris and D. O. Hebb, The Organization of Behavior, Wiley, New York (1949); Brain Res. Bull., 50, Nos. 5/6, 437 (1999).Google Scholar
  30. 30.
    M. M. Oh, B. M. Mckay, J. M. Power, and J. F. Disterhoft, “Learning-related postburst afterhyperpolarizatuion reduction in CA1 pyramidal neurons is mediated by protein kinase A,” Proc. Nati. Acad. Sci. USA, 106, No. 5, 1620-1626 (2009).CrossRefGoogle Scholar
  31. 31.
    S. J. Hayton, M. C. Olmstead, and É. C. Dumont, “Shift in the intrinsic excitability of medial prefrontal cortex neurons following training in impulse control and cuedresponding tasks,” PloS One, 6, No. 8, 1-9 (2011).CrossRefGoogle Scholar
  32. 32.
    M. W. H. Remme, M. Lengyel, and B. S. Gutkin, “Democracy-independence trade-off in oscillating dendrites and its implications for grid cells,” Neuron, 66, No. 3, 429-437 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. A. Lebedeva
    • 1
    Email author
  • A. R. Stepanyuk
    • 1
  • P. V. Belan
    • 1
  1. 1.Bogomolets Institute of Physiology, NAS of UkraineKyivUkraine

Personalised recommendations