, Volume 45, Issue 4, pp 299–305 | Cite as

Different Efficacy of Nanoparticle and Conventional ZnO in an Animal Model of Anxiety

  • M. Torabi
  • M. KesmatiEmail author
  • H. E. Harooni
  • H. N. Varzi

As has been shown, trace element supplementation by zinc, e.g., in the form of zinc oxide (ZnO), can significantly influence the anxiety level. We investigated the effects of ZnO in the form of nanoparticles (NPs) in comparison with conventional ZnO (cZnO) in an animal model of anxiety. Adult male Wistar rats were divided into seven groups, control (receiving 0.9% saline) and six groups receiving 5, 10, and 20 mg/kg ZnO NPs and 5, 10, and 20 mg/kg cZnO. All drugs dispersed in 0.9% saline were injected i.p.; 30 min later, the anxiety level was estimated according to the results of the elevated plus maze test. ZnO NPs (5 mg/kg) and cZnO (10 and 20 mg/kg) significantly increased the normalized values of time spent in open arms (open arm time, OAT, %) in comparison with the control group (P < 0.05). This is indicative of the anxiolytic effects of these components; in addition, 20 mg/kg ZnO NPs reduced the intensity of locomotor activity (P < 0.05). The serum zinc concentration was increased manifold by anxiolytic doses of the components. All doses increased serum pH to 8.05-8.10 and kept this index constant for 24 h. These results indicate that the anxiolytic effect of ZnO NPs is much more intense than that of conventional ZnO, but the introduction of ZnO NP as a new drug for the treatment of anxiety disorders needs further investigations.


anxiety ZnO nanoparticles plus maze rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Kessler, W. T. Chiu, O. Demler, and E. E. Walters, “Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiat., 62, No. 6, 617–627 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    T. E. Moffitt, H. Harrington, A. Caspi, et al., “Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years,” Arch. Gen. Psychiat., 64, No. 6, 651–660 (2007).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Takeda, “Movement of zinc and its functional significance in the brain,” Brain. Res. Rev., 34, No. 3, 137–148 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    N. L. Harrison and S. J. Gibbons, “Zn2+: an endogenous modulator of ligand- and voltage-gated ion channels,” Neuropharmacology, 33, 935–952 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Magistretti, L. Castelli, V. Taglietti, and F. Tanzi, “Dual effect of Zn2+ on multiple types of voltage-dependent Ca2+ currents in rat palaeocortical neurons,” Neuroscience, 117, No. 2, 249–264 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    T. G. Smart, X. Xie, and B. J. Krishek, “Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc,” Prog. Neurobiol., 42, 393–441 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    A. S. Prasad, “Discovery of human zinc deficiency: 50 years later,” J. Trace. Elem. Med. Biol., 26, 66–69 (2012).PubMedCrossRefGoogle Scholar
  8. 8.
    N. M Tassabehji, R. S. Corniola, A. Alshingiti, and C. W. Levenson, “Zinc deficiency induces depressionlike symptoms in adult rats,” Physiol. Behav., 95, No. 3, 365–369 (2008).PubMedCrossRefGoogle Scholar
  9. 9.
    N. Whittle, G. Lubec, and N. Singewald, “Zinc deficiency induces enhanced depression-like behavior and altered limbic activation reversed by antidepressant treatment in mice,” Amino Acids, 36, No. 1, 147–158 (2009).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Sobhanirad, R. Valizade, A. Moghimi, and A. Tahmasebi, “Evaluation of the anxiolytic effects of zinc supplemented diet in the elevated plus-maze test,” Res. J. Biol. Sci., 3, No. 9, 964–967 (2008).Google Scholar
  11. 11.
    H. M. Edwards and D. H. Baker, “Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal,” J. Anim. Sci., 77, No. 10, 2730–2735 (1999).PubMedGoogle Scholar
  12. 12.
    M. V. Do Carmo E Sб, L. E. Pezzato, M. M. Barros, and N/ P. P. De Magalhгes Padilha, “Relative bioavailability of zinc in supplemental inorganic and organic sources for Nile tilapia, Oreochromisniloticus fingerlings,” Aquacult. Nutr., 11, No. 4, 273–281 (2005).CrossRefGoogle Scholar
  13. 13.
    C. M. Sayes, K. L. Reed, and D. B. Warheit, “Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles,” Toxicol. Sci., 97, No. 1, 163–180 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Nel, T. Xia, L. Mдdler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, 311, No. 5761, 622–627 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Jin, D. Sun, J. Y. Su, et al., “Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7,” J. Food. Sci., 74, No. 1, 46–52 (2009).CrossRefGoogle Scholar
  16. 16.
    L. Yan, F. Zhao, S. J. Li, et al., “Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes and graphenes,” Nanoscale, 3, No. 2, 362–382 (2011).PubMedCrossRefGoogle Scholar
  17. 17.
    J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert. Opin. Drug. Deliv., 7, No. 9, 1063–1077 (2010).PubMedCrossRefGoogle Scholar
  18. 18.
    H. J. Wang, A. C. Growcock, T. H. Tang, et al., “Zinc oxide nanoparticle disruption of store-operated calcium entry in a muscarinic receptor signaling pathway,” Toxicol. In Vitro, 24, No. 7, 1953–1961 (2010).PubMedCrossRefGoogle Scholar
  19. 19.
    A. O. Rosa, J. Lin, J. B. Calixto, et al., “Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice,” Behav. Brain. Res., 144, 87–93 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    M. R. Zarrindast, Sahand Babapoor-Farrokhran, Savalan Babapoor-Farrokhran, and A. Rezayof, “Involvement of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala in anxietyrelated behavior,” Life. Sci., 82, 1175–1181 (2008).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Mard-Soltani, M. Kesmati, L. Khajehpour, et al., “Interaction between anxiolytic effect of testosterone and b-1 adrenoceptors of basolateral amygdala,” Int. J. Pharmacol., 8, No. 5, 344–354 (2012).CrossRefGoogle Scholar
  22. 22.
    G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids. Surf., B, Biointerfaces, 66, 274–280 (2008).CrossRefGoogle Scholar
  23. 23.
    B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett., 4, 662–668 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Arora, J. M. Rajwade, and K. M. Paknikar, “Nanotoxicology and in vitro studies: The need of the hour,” Toxicol. Appl. Pharmacol., 258, No. 2, 151–165 (2012).PubMedCrossRefGoogle Scholar
  25. 25.
    X. Peng, S. Palma, N. S. Fisher, and S. S. Wong, “Effect of morphology of ZnO nanostructures on their toxicity to marine algae,” Aquat. Toxicol., 102, Nos. 3/4, 186–196 (2011).PubMedCrossRefGoogle Scholar
  26. 26.
    P. Decuzzi, F. Causa, M. Ferrari, and P. A. Netti, “The effective dispersion of nanovectors within the tumor microvasculature,” Ann. Biomed. Eng., 34, No. 4, 633–641 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Takeda and H. Tamano, “Insight into zinc signaling from dietary zinc deficiency,” Brain. Res. Rev., 62, No. 1, 33–44 (2009).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, “Zinc at glutamatergic synapses,” Neuroscience, 158, No. 1, 126–136 (2009).PubMedCrossRefGoogle Scholar
  29. 29.
    V. Bergink, H. J. G. M. Van Megen, and H. G. M. Westenberg, “Glutamate and anxiety,” Eur. Neuropsychopharmacol., 14, 175–183 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    C. M. Padovan, E. A. Del Bel, and F. S. Guimaraes, “Behavioral effects in the elevated plus maze of an NMDA antagonist injected into the dorsal hippocampus: influence of restraint stress,” Pharmacol. Biochem. Behav., 67, No. 2, 325–330 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Y. Koh and D. W. Choi, “Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-D-aspartate receptors,” Neuroscience, 60, No. 4, 1049–1057 (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. V. Li, C. J. Hough, and J. M. Sarvey, “Do we need zinc to think?” Sci. STKE, 182, 19 (2003).Google Scholar
  33. 33.
    M. Rezvanfard, M. R. Zarrindast, and P. Bina, “Role of ventral hippocampal GABA(A) and NMDA receptors in the anxiolytic effect of carbamazepine in rats using the elevated plus maze test,” Pharmacology, 84, No. 6, 356–366 (2009).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Takeda, M. Hirate, H. Tamano, and N. Oku, “Release of glutamate and GABA in the hippocampus under zinc deficiency,” J. Neurosci. Res., 72, 537–542 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Takeda, A. Minami, Y. Seki, and N. Oku, “Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus,” J. Neurosci. Res., 75, 225–229 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Torabi
    • 1
  • M. Kesmati
    • 1
    Email author
  • H. E. Harooni
    • 1
  • H. N. Varzi
    • 2
  1. 1.Department of Biology, Faculty of SciencesShahid Chamran UniversityAhvazIran
  2. 2.Department of Pharmacology, Faculty of Veterinary MedicineShahid Chamran UniversityAhvazIran

Personalised recommendations