, Volume 44, Issue 4, pp 332–350

Epigenetics: Stress and Behavior



Possible mechanisms of the effects exerted by stress (in the broad sense of the term) on the human genome and manifested in modifications of behavior are described in this review. Behavioral epigenetics opens new prospects for interpretation of the evolution of behavior induced by changes in living conditions. Epigenetic labels (imprints, methylation of DNA and/or covalent modifications of histones) appear under the influence of actual stress environmental influences, including social interactions. The appearance of such labels is not random; it is determined contextually and leads to behavioral disorders that can be transmitted through future generations. Stress phenomena of modern life, which are psychosocial in their nature, realize their effects via quite definite biological mechanisms. Epigenetic modifications are the most probable candidates for the role of relatively fast genetic mechanisms determining changes in behavior and mental health of great contingents of individuals living under contemporary conditions of ever-increasing stress loading.


epigenetic mechanisms stress behavior hormonal-genome interactions methylation of DNA covalent modifications of histones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Faraone, M. T. Tsuang, and D. W. Tsuang, Genetics of Mental Disorders: A Guide for Students, Clinicians, and Researchers, Guilford Press, New York (1999).Google Scholar
  2. 2.
    R. Plomin, J. C. DeFries, G. E. McLean, and P. McGuffin, Behavioral Genetics, Worth Publ., New York (2008).Google Scholar
  3. 3.
    I. V. Ravich-Shcherbo, T. M. Malyutina, and Ye. L. Grigorenko, Psychogenetics, Aspekt-Press, Moscow (2002).Google Scholar
  4. 4.
    J. W. Gilger, “Contribution and promise of human behavioral genetics,” Human Biol., 72, No. 1, 229-255 (2000).PubMedGoogle Scholar
  5. 5.
    S. Torgersen, “Behavioral genetics of personality,” Current Psychiat. Rep., 7, No. 1, 51-56 (2005).CrossRefGoogle Scholar
  6. 6.
    G. L. Engel, “The need for a new medical model: A challenge for biomedicine,” Science, 196, 129-136 (1997).CrossRefGoogle Scholar
  7. 7.
    D. Pilgrim, “The biopsychosocial model in angloamerican psychiatry: Past, present and future,” J. Ment. Health, 11, No. 6, 585-594 (2002).CrossRefGoogle Scholar
  8. 8.
    T. E. Moffitt, “Genetic and environmental influences in antisocial behaviors: evidence from behavioral-genetic research,” Adv. Genet., 55, 41-104 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    Behavioral Genetics in the Postgenomic Era / R. Plomin, J. C. DeFries, I. W. Craig, and P. McGuffin (Eds.), Am. Psychol. Assoc., Washington, DC (2002).Google Scholar
  10. 10.
    Improving Health Systems and Services for Mental Health,World Health Organization (2009).Google Scholar
  11. 11.
    BMA Board of Science. Child and Adolescent Mental Health. A Guide for Healthcare Professionals, Br. Med. Assoc., London (2006).Google Scholar
  12. 12.
    S. Collishaw, B. Maughan, R. Goodman, et al., “Time trends in adolescent mental health,” J. Child Psychol. Psychiat., 45, No. 8, 1350-1362 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    M. D. Golubovskii, Century of Genetics: Evolution of Ideas and Concepts, Borei Art, St. Petersburg (2000).Google Scholar
  14. 14.
    Z. Hochberg, R. Feil, M. Constancia, et al., “Child health, developmental plasticity, and epigenetic programming,” Endocrine Rev., 32, No. 2, 159-224 (2010).CrossRefGoogle Scholar
  15. 15.
    A. M. Vaiserman, V. P. Voitenko, and L. V. Mekhova, “Epigenetic epidemiology of age-dependent diseases,” Ontogenez, 42, No. 1, 1-21 (2011).Google Scholar
  16. 16.
    Е. Jablonka and M. J. Lamb, “The inheritance of acquired epigenetic variations,” J. Theor. Biol., 139, No. 1, 69-83 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    O. E. Landman, “The inheritance of acquired characteristics,” Annu. Rev. Genet., 25, 1-20 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    E. J. Richards, “Inherited epigenetic variation – revisiting soft inheritance,” Nat. Rev. Genet., 7, 395-400 (2006).PubMedCrossRefGoogle Scholar
  19. 19.
    D. L. Grodnitskii, “Epigenetic theory of evolution as a probable base for the new evolutionary synthesis,” Zh. Obshch. Biol., 62, No. 2, 99-109 (2001).PubMedGoogle Scholar
  20. 20.
    M. J. Meaney, M. Szyf, and J. R. Seckl, “Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health,” Trends Mol. Med., 13, No. 7, 269-277 (2007).PubMedCrossRefGoogle Scholar
  21. 21.
    J. M. Levenson, T. L. Roth, F. D. Lubin, et al., “Evidence that DNA (cytosine-5)methytransferase regulates synaptic plasticity in hippocampus,” J. Biol. Chem., 281, 15763-15773 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    C. A. Miller and J. D. Sweat, “Covalent modification of DNA regulates memory function,” Neuron, 53, 857-869 (2007).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Szyf, “Epigenetic control of gene expression. The early life environment and the epigenome,” Biochim. Biophys. Acta (BBA), 1790, No. 9, 878-885 (2009).CrossRefGoogle Scholar
  24. 24.
    M. Fagiolini, C. L. Jensen, and F. A. Champagne, “Epigenetic influences on brain development and plasticity,” Curr. Opin. Neurobiol., 19, No. 2, 207-212 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    M. Szyf, “The dynamic epigenome and its implications in toxicology,” Toxicol. Sci., 100, 7-23 (2007).PubMedCrossRefGoogle Scholar
  26. 26.
    P. D. Gluckman and M. A. Hanson, “Living in the past: evolution, development, and patterns of disease,” Science, 305, 1733-1736 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    B. F. Vanyushin, S. G. Tkacheva, and A. N. Belozersky, “Rare bases in animal DNA,” Nature, 225, 948-949 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    B. F. Vanyushin, “Methylation of DNA in cells of different organisms,” Usp. Sovrem. Biol., 77, No. 2, 68-90 (1974).Google Scholar
  29. 29.
    B. F. Vanyushin, N. A. Tushmalova, and L. V. Gus’kova, “Methylation of DNA in the brain as an index of involvement of the genome in mechanisms of individually acquired memory,” Dokl. Akad. Nauk. SSSR, 219, 742-744 (1974).Google Scholar
  30. 30.
    B. F. Vanyushin and Ye. B. Romanenko, “Changes of methylation of DNA in rats in ontogenesis and under the influence of hydrocortisone,” Biokhimiya, 44, 78-85 (1979).Google Scholar
  31. 31.
    B. F. Vanyushin, “Methylation of DNA and epigenetics,” Genetika, 42, No. 9, 1186-1199 (2006).Google Scholar
  32. 32.
    A. V. Prokhorchouk and A. S. Ruzov, “Methylation of the genome and its role in the functioning of an eukaryotic organism,” Genetika. 36, No. 11, 1475-1486 (2000).Google Scholar
  33. 33.
    R. Kumar and E. B. Thompson, “Gene regulation by the glucocorticoid receptor: structure/function relationship,” J. Steroid Biochem. Mol. Biol., 94, No. 5, 383-394 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Gehring, W. Reik, and S. Henikoff, “DNA demethylation by DNA repair,” Trends Genet., 25, 82-90 (2009).PubMedCrossRefGoogle Scholar
  35. 35.
    B. E. Bernstein, A. Meissner, and E. S. Lander, “The mammalian epigenome,” Cell, 128, 669-681 (2007).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Szyf, “DNA methylation, the early-life social environment and behavioral disorders,” J. Neurodev. Disord., 3, No. 3, 238-249 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    W. Fillipowicz, L. Jaskiewich, F. A. Kolb, and R. S. Pillai, “Post-transcriptional gene silencing by siRNAs and miRNAs,” Curr. Opin. Struct. Biol., 15, 331-341 (2005).CrossRefGoogle Scholar
  38. 38.
    M. Tijsterman, R. F. Ketting, and R. H. Plasterk, “The genetics of DNA silencing,” Annu. Rev. Genet., 36, 489518 (2002).CrossRefGoogle Scholar
  39. 39.
    A. Bilang-Bleuel, S. Ulbricht, Y. Chandramohan, et al., “Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptor-dependent behavioral response,” Eur. J. Neurosci., 22, No. 7, 16911700 (2005).CrossRefGoogle Scholar
  40. 40.
    C. Tsigos and G. P. Chrousos, “Hypothalamic-pituitaryadrenal axis, neuroendocrine factors and stress,” J. Psychosom. Res., 53, No. 4, 865-871 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    E. Charmandari, C. Tsigos, and G. P. Chrousos, “Endocrinology of the stress response,” Annu. Rev. Physiol., 67, 259-284 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    G. Aguilera, A. Kiss, Y. Liu, and A. Kamitakahara, “Negative regulation of corticotropin releasing factor expression and limitation of stress response,” Stress, 10, No. 2, 153-161 (2007).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Hayashi, H. Wada, K. Ito, et al., “Effects of glucocorticoids on gene transcription,” Eur. J. Pharmacol., 500, Nos. 1/3, 51-62 (2004).PubMedCrossRefGoogle Scholar
  44. 44.
    M. E. Bauer, “Stress, glucocorticoids and ageing of the immune system,” Stress, 8, No. 1, 69-83 (2005).PubMedCrossRefGoogle Scholar
  45. 45.
    C. B. Nemeroff and W. W. Vale, “The neurobiology of depression: Inroads to treatment and new drugs discovery,” J. Clin. Psychiat., 66, Suppl. 6, 5-13 (2005).Google Scholar
  46. 46.
    K. Dedovic, A. Duchesne, J. Andrews, et al., “The brain and the stress axis: The neural correlates of cortisol regulation in response to stress,” NeuroImage, 47, 864871 (2009).CrossRefGoogle Scholar
  47. 47.
    J. S. Snyder, A. Soumier, M. Brewer, et al., “Adult hippocampal neurogenesis buffers stress responses and depressive behavior,” Nature, 476, 458-461 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    J. R. Seckl, “11β-hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action?” Front. Neuroendocrinol., 18, 49-99 (1997).PubMedCrossRefGoogle Scholar
  49. 49.
    D. Wasserman, Depression. The Facts, Oxford Univ. Press, Oxford (2006).Google Scholar
  50. 50.
    L. Reba-Harrelson, A. Von Holle, R. M. Hamer, et al., “Patterns of maternal feeding and child eating associated with eating disorders in the Norwegian mother and child cohort study (MoBa),” Eat Behav., 11, No. 1, 54-61 (2010).PubMedCrossRefGoogle Scholar
  51. 51.
    S. A. Swanson, S. J. Crow, D. Le Grange, et al., “Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement,” Arch. Gen. Psychiat., 68, No. 7, 714-723 (2011).PubMedCrossRefGoogle Scholar
  52. 52.
    C. N. Hales and D. J. P. Barker, “The thrifty phenotype hypothesis,” Br. Med. Bull., 60, 5-20 (2001).PubMedCrossRefGoogle Scholar
  53. 53.
    K. A. Halmi, “Anorexia nervosa: An increasing problem in children and adolescents,” Dialogues Clin. Neurosci., 11, No. 1, 100-103 (2009).PubMedPubMedCentralGoogle Scholar
  54. 54.
    V. A. Rozanov, Zh. K. Yemyasheva, and B, V, Biron, “Effect of a trauma in childhood in accumulation of stress events and formation of suicidal trends in the course of life,” Ukr. Med. Chasopys, 6, No. 86, 94-98 (2011).Google Scholar
  55. 55.
    S. J. Lupien, B. S. McEwen, M. R. Gunnar, et al., “Effects of stress throughout the lifespan on the brain, behavior and cognition,” Nature Rev. Neurosci., 10, No. 6, 434-445 (2009).CrossRefGoogle Scholar
  56. 56.
    L. A. M. Welberg, J. R. Seckl, and M. C. Holmes, “Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotropin-releasing hormone: Possible implication for behavior,” Neuroscience, 104, No. 1, 71-79 (2001).PubMedCrossRefGoogle Scholar
  57. 57.
    J. I. Koenig, G. I. Elmer, P. D. Shepard, et al., “Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: Potential relevance to schizophrenia,” Behav. Brain Res., 156, No. 2, 251-261 (2005).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Weinstock, “The potential influence of maternal stress hormones on development and mental health of the offspring,” Brain Behav. Immunol., 19, No. 4, 296308 (2005).CrossRefGoogle Scholar
  59. 59.
    N. S. Levitt, “Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring of the rat,” Neuroendocrinology, 64, 412-418 (1996).PubMedCrossRefGoogle Scholar
  60. 60.
    P. R. Lee, D. L. Brady, R. A. Shapiro, et al., “Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin,” Brain Res., 1156, 152-167 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    A. K. Kinnunen, J. I. Koenig, and G. Bilbe, “Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole,” J. Neurochem., 86, No. 3, 736-748 (2003).PubMedCrossRefGoogle Scholar
  62. 62.
    A. G. Reznikov, N. D. Nosenko, L. V. Tarasenko, et al., “Early and long-term neuroendocrine effects of prenatal stress in male and female rats,” Neurosci. Behav. Physiol., 31, No. 1, 1-5 (2001).PubMedCrossRefGoogle Scholar
  63. 63.
    A. G. Reznikov, V. P. Pishak, N. D. Nosenko, et al., Prenatal Stress and Neuroendocrinal Pathologies, Medakademiya, Chernovtsy (2004).Google Scholar
  64. 64.
    T. G. O’Connor, Y. Ben-Shlomo, J. Heron, et al., “Prenatal anxiety predicts individual differences in cortisol in preadolescent children,” Biol. Psychiat., 58, 211-217 (2005).PubMedCrossRefGoogle Scholar
  65. 65.
    J. I. Koenig, C.-D. Walker, R. D. Romeo, et al., “Effects of stress across the lifespan,” Stress, 14, No. 5, 475-480 (2011).PubMedCrossRefGoogle Scholar
  66. 66.
    T. Oberlander, J. Weinberg, M. Papsdorf, et al., “Prenatal exposure to maternal depression and methylation of human glucocorticoid receptor gene (NR3C1) in newborns,” Epigenetics, 3, 97-106 (2008).PubMedCrossRefGoogle Scholar
  67. 67.
    A. M. Devlin, U. Brain, J. Austin et al., “Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth,” PLoS ONE, 5, No. 8, e12201. doi:10.1371/journal.pone.0012201 (2010).PubMedCentralPubMedGoogle Scholar
  68. 68.
    R. Zh. Mukhamedrakhimov, A Mother and a Baby: Psychological Interaction, Rech’, Moscow (2003).Google Scholar
  69. 69.
    M. J. Meaney, “Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations,” Annu. Rev. Neurosci., 24, 1161-1192 (2001).PubMedCrossRefGoogle Scholar
  70. 70.
    F. A. Champagne, “Epigenetic mechanisms and the transgenerational effects of maternal care,” Front. Neuroendocrinol., 29, 386-397 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    D. Liu, J. Diorio, B. Tannenbaum, et al., “Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress,” Science, 277, No. 5332, 1659-1662 (1997).PubMedCrossRefGoogle Scholar
  72. 72.
    I. C. G. Weaver, N. Cervoni, F. A. Champagne, et al., “Epigenetic programming by maternal behavior,” Nature Neurosci., 7, 847-854 (2004).PubMedCrossRefGoogle Scholar
  73. 73.
    P. M. Plotsky and M. J. Meaney, “Early postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats,” Mol. Brain Res., 18, 195-200 (1993).PubMedCrossRefGoogle Scholar
  74. 74.
    D. Liu, C. Caldji, S. Sharma, et al., “The effects of early life events on in vivo release of norepinephrine in the paraventricular nucleus of the hypothalamus and hypothalamic-pituitary-adrenal responses during stress,” J. Neuroendocrinol., 12, 5-12 (2000).PubMedCrossRefGoogle Scholar
  75. 75.
    C. D. Walker, Z. Xu, J. Rochford, et al., “Naturally occurring variations in maternal care modulate the effects of repeated neonatal pain on behavioral sensitivity to thermal pain in the adult offspring,” Pain, 140, No. 1, 167-176 (2008).PubMedCrossRefGoogle Scholar
  76. 76.
    C. D. Walker, “Maternal touch and feed as critical regulators of behavioral and stress responses in the offspring,” Dev. Psychobiol., 52, No. 7, 638-650 (2010).PubMedCrossRefGoogle Scholar
  77. 77.
    S. V. Coutinho, P. M. Plotsky, M. Sablad, et al., “Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat,” Am. J. Physiol. Gastrointest. Liver Physiol., 282, G307-G316 (2002).PubMedCrossRefGoogle Scholar
  78. 78.
    A. Caspi, K. Sugden, and T. E. Moffitt, “Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene,” Science, 301, 386-389 (2003).PubMedCrossRefGoogle Scholar
  79. 79.
    E. B. Binder, R. G. Bradley, L. Wei, et al., “Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults,” J. Am. Med. Assoc., 299, 1291-1305 (2008).CrossRefGoogle Scholar
  80. 80.
    F. A. Champagne and J. P. Curley, “Epigenetic mechanisms mediating the long-term effects of maternal care on development,” Neurosci. Biobehav. Rev., 33, No. 4, 593-600 (2009).PubMedCrossRefGoogle Scholar
  81. 81.
    D. Crews, “Epigenetics and its implications for behavioral neuroendocrinology,” Front. Neuroendocrinol., 29, No. 3, 344-357 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    P. O. McGowan and M. Szyf, “The epigenetics of social adversity in early life: implications for mental health outcomes,” Neurobiol. Dis., 39, No. 1, 66-72 (2010).PubMedCrossRefGoogle Scholar
  83. 83.
    B. Labonte and G. Turecki, “The epigenetics of suicide: explaining the biological effect of early life environmental adversity,” Arch. Suicide Res., 14, No. 4, 291-310 (2011).CrossRefGoogle Scholar
  84. 84.
    P. O. McGowan, A. Sasaki, A. C. D’Alessio, et al., “Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse,” Nat. Neurosci., 12, No. 3, 342-348 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    M. J. Meaney, J. Diorio, D. Francis, et al., “Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: The effects of thyroid hormones and serotonin,” J. Neurosci., 20, No. 10, 3926-3935 (2000).PubMedGoogle Scholar
  86. 86.
    B. Buwalda, M. H. P. Kole, A. H. Veenema, et al., “Longterm effects of social stress on brain and behavior: a focus on hippocampal functioning,” Neurosci. Biobehav. Rev., 29, No. 1, 83-97 (2005).PubMedCrossRefGoogle Scholar
  87. 87.
    N. M. Tsankova, O. Berton, W. Renthal, et al., “Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action,” Nat. Neurosci., 9, No. 4, 519-525 (2006).PubMedCrossRefGoogle Scholar
  88. 88.
    R. S. Duman and L. M. Monteggia, “A neurotrophic model of stress-related mood disorders,” Biol. Psychiat., 59, No. 12, 1116-1127 (2006).PubMedCrossRefGoogle Scholar
  89. 89.
    M. Sarchiapone, V. Carli, A. Roy, et al., “Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients,” Neuropsychobiology, 57, No. 3, 139-145 (2008).PubMedCrossRefGoogle Scholar
  90. 90.
    T. L. Roth, F. D. Lubin, A. J. Funk, et al., “Lasting epigenetic influence of early-life adversity on the BDNF gene,” Biol. Psychiat., 65, No. 9, 760-769 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    S. Keller, M. Sarchiapone, F. Zarrilli, et al., “Increased BDNF promoter methylation in the Wernicke area of suicide subjects,” Arch. Gen. Psychiat., 69, No. 1, 62-70 (2012).CrossRefGoogle Scholar
  92. 92.
    N. Borghol, M. Suderman, W. McArdle, et al., “Associations with early-life socio-economic position in adult DNA methylation,” Int. J. Epidemiol., 10.1093/ ije/dyr147 (2011).Google Scholar
  93. 93.
    J. Goodall, Chimpanzee in Nature: Behavior [in Russian], Mir, Moscow (1992).Google Scholar
  94. 94.
    L. A. Fairbanks, “Early experience and cross-generational continuity of mother-infant contact in vervet monkeys,” Dev. Psychobiol., 22, 669-681 (1986).CrossRefGoogle Scholar
  95. 95.
    D. Mastripieri, K. Wallen, and K. A. Carrol, “Infant abuse runs in families of group-living pigtail macaques,” Child Abuse Negl., 21, 465-471 (1997).CrossRefGoogle Scholar
  96. 96.
    D. Mastripieri, “Parenting styles of abusive mothers in group-living rhesus macaques,” Anim. Behav., 55, 1-11 (1998).CrossRefGoogle Scholar
  97. 97.
    M. Bardi and M. A. Huffman, “Effects of maternal style on infant behavior in Japanese macaques (Macaca fuscata),” Dev. Psychobiol., 41, No. 4, 364-372 (2002).PubMedCrossRefGoogle Scholar
  98. 98.
    D. Benoit and K. C. Parker, “Stability and transmission of attachment across three generations,” Child Dev., 65, 1444-1456 (1994).PubMedCrossRefGoogle Scholar
  99. 99.
    M. H. van Ijzendoorn, “Adult attachment representations, parental responsiveness and infant attachment: a metaanalysis of the predictive validity of the adult attachment interview,” Psychol. Bull., 117, 387-403 (1995).PubMedCrossRefGoogle Scholar
  100. 100.
    D. R. Pederson, K. E. Gleason, G. Moran, et al., “Maternal attachment representations maternal sensitivity and the infant-mother attachment relationship,” Dev. Psychol., 34, 925-933 (1998).PubMedCrossRefGoogle Scholar
  101. 101.
    H. J. Lee, A. H. Macbeth, J. H. Pagani, and W. S. Young, “Oxytocin: the great facilitator of life,” Prog. Neurobiol., 88, No. 2, 127-151 (2009).PubMedPubMedCentralGoogle Scholar
  102. 102.
    Z. R. Donaldson and L. J. Young, “Oxytocin, vasopressin, and the neurogenetics of sociality,” Science, 322, 900-904 (2008).PubMedCrossRefGoogle Scholar
  103. 103.
    N. Numan, “Motivational system and the neural circuitry of maternal behavior in the rat,” Dev. Psychobiol., 49 , 12-21 (2007).PubMedCrossRefGoogle Scholar
  104. 104.
    D. C. Francis, F. C. Champagne, and M. J. Meaney, “Variations in maternal behavior are associated with differences in oxytocin receptor levels in the rat,” J. Neuroendocrinol., 12, 1145-1148 (2000).PubMedCrossRefGoogle Scholar
  105. 105.
    F. C. Champagne, J. Diorio, S. Sharma, et al., “Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors,” Proc. Natl. Acad. Sci. USA, 98, 12736-12741 (2002).CrossRefGoogle Scholar
  106. 106.
    F. A. Champagne, I. C. Weaver, J. Diorio, et al., “Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring,” Endocrinology, 147, 2909-2915 (2006).PubMedCrossRefGoogle Scholar
  107. 107.
    J. P. Curley, F. A. Champagne, P. Bateson, et al., “Transgenerational effects of impaired maternal care on behavior of offspring and grandoffspring,” Anim. Behav., 75, No. 4, 1551-1561 (2008).CrossRefGoogle Scholar
  108. 108.
    L. A. Smit-Rigter, F. A. Champagne, and J. A. van Hooft, “Lifelong impact of variations in maternal care on dendritic structure and function of cortical layer 2/3 pyramidal neurons in rat offspring,” PLoS ONE, 4, No. 4, e5167. doi: 10.1371/journal.pone.0005167 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    E. Jablonka and G. Raz, “Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution,” Quart. Rev. Biol., 84, No. 2, 131-176 (2009).PubMedCrossRefGoogle Scholar
  110. 110.
    M. E. Pembrey, L. O. Bygren, G. Kaati, et al., “Sexspecific, male-line transgenerational responses in humans,” Eur. J. Human Genet., 14, No. 2, 159-166 (2006).CrossRefGoogle Scholar
  111. 111.
    C. Lindqvist, A. M. Janczak, D. Natt, et al., “Transmission of stress-induced learning impairment and associated brain gene expression from parents to offspring in chickens,” PLoS ONE, 2, No. 4, e364. doi: 10.1371/journal.pone.0000364 (2007). PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Y. Liu, “Like father like son. A fresh review of the inheritance of acquired characteristics,” EMBO Rep., 8, No. 9, 798-803 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    E. B. Keverne and J. P. Curley, “Epigenetics, brain evolution and behavior,” Front. Neuroendocrinol., 29, 398-412 (2008).PubMedCrossRefGoogle Scholar
  114. 114.
    A. Joshi, “Behavior genetics in the post-genomics era: From genes to behavior and vice versa,” Curr. Sci., 89, No. 7, 1128-1135 (2005).Google Scholar
  115. 115.
    C. W. Kuzawa, “The fetal origins of developmental plasticity: are fetal clues reliable predictors of future nutritional environments?” Am. J. Human Biol., 17, 5-21 (2005).CrossRefGoogle Scholar
  116. 116.
    B. M. Lester, E. Tronick, E. Nestler, et al., “Behavioral epigenetics,” Ann. N. Y. Acad. Sci., 1226, 14-33 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    A. Caspi, J. McClay, T. E. Moffitt, et al., “Role of genotype in the cycle of violence in maltreated children,” Science, 297, 851-854 (2002).PubMedCrossRefGoogle Scholar
  118. 118.
    J. Tabery, “Biometric and developmental gene-environment interactions: looking back, moving forward,” Dev. Psychopathol., 19, 961-976 (2007).PubMedCrossRefGoogle Scholar
  119. 119.
    D. G. Kilpatrick, K. C. Koenen, K. J. Ruggiero, et al., “The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults,” Am. J. Psychiat., 164, No. 11, 1693-1699 (2007).PubMedCrossRefGoogle Scholar
  120. 120.
    T. Bradley, M. E. Cupples, and H. Irvine, “A case control study of a deprivation triangle: teenage motherhood, poor educational achievement and unemployment,” Int. J. Adolesc. Med. Health, 14, No. 2, 117-123 (2002).PubMedCrossRefGoogle Scholar
  121. 121.
    E. Mittendorfer-Rutz, F. Rasmussen, and D. Wasserman, “Restricted fetal growth and adverse maternal psychosocial and socioeconomic conditions as risk factors for suicidal behavior of offspring: a cohort study,” Lancet, 364, 1135-1140 (2004).PubMedCrossRefGoogle Scholar
  122. 122.
    G.-X. Jiang, F. Rasmussen, and D. Wasserman, “Short stature and poor psychological performance: risk factors for attempted suicide among Swedish make conscripts,” Acta Psychiat. Scand., 100, 433-440 (1999).PubMedCrossRefGoogle Scholar
  123. 123.
    P. K. E. Magnusson, F. Rasmussen, D. A. Lawlor, et al., “Association of body mass index with suicide mortality: A prospective cohort study of more than one million men,” Am. J. Epidemiol., 163, 1-8 (2006).PubMedCrossRefGoogle Scholar
  124. 124.
    C. S. Meade, T. S. Kershaw, and J. R. Ickovics, “The intergenerational cycle of teenage motherhood: an ecological approach,” Health Psychol., 27, No. 4, 419429 (2008).CrossRefGoogle Scholar
  125. 125.
    J. D. Molina, F. Lopez-Munoz, D. J. Stein, et al., “Borderline personality disorder: A review and reformulation from evolutionary theory,” Med. Hypotheses, 73, 382-386 (2009).PubMedCrossRefGoogle Scholar
  126. 126.
    K. S. Kendler, “Genetic and environmental pathways to suicidal behavior: Reflections of a genetic epidemiologist,” Eur. Psychiat., 25, 300–303 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.National UniversityOdessaUkraine

Personalised recommendations