, Volume 44, Issue 3, pp 240–246 | Cite as

Spatial Infrastructure of Receptive Fields and Responses to Moving Stimuli of Visually Driven Neurons in the Cat Extrastriate Cortex

  • J. A. Kozak
  • D. K. Khachvankyan
  • A. L. Ghazaryan
  • A. B. Sharanbekyan
  • B. A. Harutiunyan-Kozak

The structure of receptive fields (RFs) of visually sensitive neurons has been shown in numerous studies to be the main and most important element for extraction of visual information from the environment [1, 2, 3, 4, 5]. Thus, the properties of visually driven neurons in both primary visual cortex and associative extrastriate cortical areas are, as a rule, chiefly determined by spatial and temporal constraints of the neuronal RFs. In our experiments, we tried to describe in detail the spatial infrastructure of neuronal RFs according to the activity profiles of neurons localized in area 21a of the cat cortex observed upon presentation of moving visual stimuli. Extracellular recordings of single-cell activity and the masking technique were used. We found that the RF spatial substructure in the majority of investigated neurons (61 %, n = 32) is composed of regions with different qualitative characteristics of response patterns to moving visual stimuli. Nearly 35 % (n = 12) of the investigated neurons revealed unresponsive subregions in the RF (mainly within bordering areas of the RF) when tested by small-amplitude movements of the stimuli. It is suggested that the existence of interactions among neighboring groups of neurons may play an important role in precise visual processing within extrastriate areas of the cortex.


extrastriate cortex receptive fields spatial substructure moving stimuli processing of visual information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. K. Hartline, “The receptive field of optic nerve fibers,” Am. J. Physiol., 130, No. 3, 690-699 (1940).Google Scholar
  2. 2.
    D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol., 148, No. 3, 574-591 (1959).PubMedGoogle Scholar
  3. 3.
    D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., 160, No. 1, 106-154 (1962).PubMedGoogle Scholar
  4. 4.
    P. O. Bishop, J. S. Coombs, and G. H. Henry, “Interaction effects of visual contours in the discharge frequency of simple striate neurons,” J. Physiol., 219, No. 1, 659-687 (1971).PubMedGoogle Scholar
  5. 5.
    P. O. Bishop, J. S. Coombs, and G. H. Henry, “Receptive fields of simple cells in the cat striate cortex,” J. Physiol., 231, No. 3, 31-60 (1973).PubMedGoogle Scholar
  6. 6.
    D. K. Khachvankyan, J. A. Kozak, A. L. Ghazaryan, et al., “Dynamics of neuronal receptive fields in extrastriate area 21a of the cat cortex,” Inform. Technol. Manag., 1, 191-202 (2011).Google Scholar
  7. 7.
    U. T. Eysel, D. Eyding, and G. Schweigart, “Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex,” NeuroReport, 9, No. 5, 949-954 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Dreher, A. Michalski, R. H. T. Ho, et al., “Processing of form and motion in area 21a of cat visual cortex,” Vis. Neurosci., 10, No. 1, 93-115 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    B. A. Harutiunyan-Kozak, D. K. Khachvankyan, G. G. Grigoryan, et al., “Dynamic spatial organization of receptive fields of neurons in the 21a cortical area,” Neurophysiology, 42, No. 3, 175-184 (2010).CrossRefGoogle Scholar
  10. 10.
    K. Suder, K. Funke, Y. Zhao, et al., “Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity,” Exp. Brain Res., 144, No. 4, 430-444 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    D. K. Khachvankyan, J. A. Kozak, A. L. Ghazaryan, et al., “Variability of discharge center spatial localization in receptive fields of visually driven neurons,” Electron. J. Nat. Sci. Nat. Acad. Sci. Republ. Armenia, 1, No. 16, 20-26 (2011).Google Scholar
  12. 12.
    J. W. Morley and R. M. Vickery, “Spatial and temporal frequency selectivity of cells in area 21a of the cat,” J. Physiol., 501, No. 2, 405-413 (1977).CrossRefGoogle Scholar
  13. 13.
    K. Mizobe, M. Itoi, T. Kaihara, and K. Toyama, “Neuronal responsiveness in area 21a of the cat,” Brain Res., 438, Nos. 1/2, 307-310 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    P. O. Bishop, W. Kozak, and G. J. Vakkur, “Some quantitative aspects of cat’ eye: axis and plane reference, visual field coordinates and optics,” J. Physiol., 163, No. 3, 466-502 (1962).PubMedGoogle Scholar
  15. 15.
    R. Fernald and R. Chase, “An improved method for plotting retinal landmarks and focusing the eye,” Vis. Res., 11, No. 1, 95-96 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    J. M. Sprague, A. Di Berardini, and G. Berlucchi, “Visual cortical areas mediating form discrimination in the cat,” J. Comp. Neurol., 172, No. 3, 441-488 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    R. J. Tusa and L. A. Palmer, “Retinotopic organization in areas 20 and 21 in the cat,” J. Comp. Neurol., 193, No. 1, 147-164 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Xing and G. L. Gerstein, “Networks with lateral connectivity. Development of neuronal grouping and corresponding receptive field changes,” J. Neurophysiol., 75, No. 1, 200-215 (1996).PubMedGoogle Scholar
  19. 19.
    G. A. Walker, J. Ohzawa, and R. D. Freeman, “Suppression outside the classical cortical receptive field,” Vis. Neurosci., 17, No. 3, 369-379 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    J. W. Pilow, J. Shlens, L. Paninski, et al., “Spatiotemporal correlation and visual signaling in a complete neuronal population,” Nature, 454, No. 7207, 995-999 (2008).CrossRefGoogle Scholar
  21. 21.
    R. D. Freeman, J. Ohzawa, and G. A. Walker, “Beyond the classical receptive field in the visual cortex,” Prog. Brain Res., 134, No. 1, 157-170 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    C. L. Passaglia, C. Enroth-Cugel, and J. B. Troy, “Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells,” J. Neurosci., 21, No. 15, 5794-5803 (2001).PubMedGoogle Scholar
  23. 23.
    B. A. Harutiunyan-Kozak, A. A. Hekimyan, A. L. Ghazaryan, et al., “Double receptive fields of neurons in the cat lateral geniculate nucleus,” Neurophysiology, 33, No. 4, 436-446 (2001).Google Scholar
  24. 24.
    H. J. Alitto and W. M. Usrey, “Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey,” Neuron, 57, No. 1, 135-146 (2008).PubMedCrossRefGoogle Scholar
  25. 25.
    L. Maffei and A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vis. Res., 16, No. 10, 1131-1139 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Li and W. Li, “Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons-classification and tuning properties,” Vis. Res., 34, No. 8, 2337-2355 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    G. A. Walker, J. Ohzawa, and R. D. Freeman, “Asymmetric suppression outside the classical cortical receptive field of the visual cortex,” J. Neurosci., 19, No. 23, 10536-10553 (1999).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Wright State UniversityDaytonUSA
  2. 2.Institute of Applied Problem of PhysicsYerevanArmenia
  3. 3.National Institute of HealthYerevanArmenia

Personalised recommendations