, Volume 44, Issue 2, pp 138–143

Developmental Changes of Visual Mismatch Negativity

  • N. Tomio
  • T. Fuchigami
  • Y. Fujita
  • O. Okubo
  • H. Mugishima

The mismatch negativity component, MMN, is an event-related potential (ERP) corresponding to the difference between evoked brain potentials elicited by standard-pattern stimuli and rare deviant stimuli differing from the above ones in some feature. Therefore, the MMN is a pre-attentive change-specific ERP component well defined for the case of auditory modality. Recently, several studies have examined MMN for the visual modality, but there are few reports on the developmental changes in this potential in children. In our work, the MMN was studied using a part of Ramachandran pattern (image of a ball with white/black or black-white upper and lower parts) in 107 (55 males and 52 females) normal subjects aged 2 to 27 years. Developmental changes in the visual MMN latency were examined. The mean value of this parameter in 2- to 3-year-old children was 394 ± 58 mseс (M ± s.d.); it decreased with increasing age, up to about 16 years, and then stabilized, reaching 273 ± 32 msec. These findings indicate that the cognitive function of children improves rapidly until 16 years of age. The visual MMN latency may assist in the evaluation of cognitive function development, such as pre-attentional processing.


child development cognition event-related potentials visual stimulation mismatch negativity pre-attentional processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Tales, T. Troscianko, G. K. Wicock, et al., “Agerelated changes in the preattentional detection of visual change,” NeuroReport, 13, No. 7, 969-972 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Näätänen and A. W. K. Gaillard, “The orienting reflex and N2 deflection of the event-related potential (ERP),” in: Tutorials in Event-Related Potential Research: Endogenous Components, A. W. K. Gaillard and W. Ritter (eds.), Elsevier, Amsterdam (1983), pp. 119-141.CrossRefGoogle Scholar
  3. 3.
    T. Fuchigami, O. Okubo, Y. Fujita, et al., “Auditory event-related potential and reaction time in children: evaluation of cognitive development,” Dev. Med. Child. Neurol., 35, No. 3, 230-237 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Fuchigami, O. Okubo, K. Ejiri, et al., “Developmental changes in P300 wave elicited during two different experimental conditions,” Pediat. Neurol., 13, No. 1, 25-28 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Fuchigami, O. Okubo, Y. Fujita, et al., “Event-related potentials in response to 3-D auditory stimuli,” Brain. Dev., 31, No. 8, 577-581 (2009).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Näätänen, A. W. K. Gaillard, and S. Mäntysalo, “Early selective-attention on evoked potential reinterpreted,” Acta Psychol., 42, No. 4, 313-329 (1978).CrossRefGoogle Scholar
  7. 7.
    R. Näätänen, “The mismatch negativity,” in: Attention and Brain Function, R. Näätänen (ed.), Laurence Erbaum Associates, New Jersey (1992), pp. 136-200.Google Scholar
  8. 8.
    P. Korpilahti and H. Lang, “Auditory ERP components and mismatch negativity in dysphasic children,” Electroencephalogr. Clin. Neurophysiol., 91, No. 4, 256-264 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Cheour, K. Alho, K. Ceponiene, et al., “Maturation of mismatch negativity in infants,” Int. J. Psychophysiol., 29, No. 2, 217-226 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    V. L. Shafer, M. L. Morr, J. A. Kreuzer, and D. Kurtzberg, “Maturation of mismatch negativity in school-age children,” Ear Hear., 21, No. 3, 242-251 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    M. L. Morr, V. L. Shafer, J. A. Kreuzer, and D. Kurtzberg, “Maturation of mismatch negativity in typically developing infants and preschool children,” Ear Hear., 23, No. 2, 118-136 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    N. Kraus, T. McGee, A. Sharma, et al., “Mismatch negativity event-related potential elicited by speech stimuli,” Ear. Hear., 13, No. 3, 158-164 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    N. Kraus, T. McGee, A. Micco, et al., “Mismatch negativity in school-age children to speech stimuli that are just perceptibly different,” Electroencephalogr. Clin. Neurophysiol., 88, No. 2, 123-130 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    V. Csepe, B. Dieckmann, M. Hoke, and B. Ross, “Mismatch negativity to pitch change of acoustic stimuli in preschool- and school-age children,” in: Proceedings of the 10th International Conference on the Event- Related Potentials of the Brain (Eger, May 31-June 5, 1992), Eger (1992), p. 32.Google Scholar
  15. 15.
    R. Horimoto, M. Inagaki, T. Yano, et al., “Mismatch negativity of the color modality during a selective attention task to auditory stimuli in children with mental retardation,” Brain. Dev., 24, No. 7, 703-709 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    I. E. Holopainen, P. Korpilahti, K. Juottonen, et al., “Abnormal frequency mismatch negativity in mentally retarded children and in children with developmental dysphasia,” J. Child. Neurol., 13, No. 4, 178-183 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Ferri, M. Elia, N. Agarwal, et al., “The mismatch negativity and the P3a components of auditory eventrelated potentials in autistic low-functioning subjects,” Clin. Neurophysiol., 114, No. 9, 1671-1680 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Cammann, “Is there a mismatch negativity (MMN) in the visual modality?” Behav. Brain. Sci., 13, No. 2, 234-235 (1990). CrossRefGoogle Scholar
  19. 19.
    K. Alho, D. L. Woods, A. Algazi, and R. Näätänen, “Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space,” Electroencephalogr. Clin. Neurophysiol., 82, No. 5, 356-368 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Tanaka, O. Okubo, T. Fuchigami, and K. Harada, “A study of mismatch negativity in newborns,” Pediat. Int., 43, No. 3, 281-286 (2001).CrossRefGoogle Scholar
  21. 21.
    K. Ejiri, O. Okubo, and M. Okuni, “The study of mismatch negativity (in Japanese with English abstract),” No To Hattatsu (Tokyo), 24, No. 6, 565-570 (1992).Google Scholar
  22. 22.
    V. S. Ramachandran, “Visual perception in people and machines,” in: AI and the Eye, A. Blake and T. Troscianko (eds.), Wiley, New York (1990), pp. 21-77.Google Scholar
  23. 23.
    R. Näätänen, “The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function,” Behav. Brain. Sci., 13, No. 2, 201-233 (1990).CrossRefGoogle Scholar
  24. 24.
    R. Näätänen, “The mismatch negativity: a powerful tool for cognitive neuroscience,” Ear. Hear., 16, No. 1, 6-18 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Näätänen, “MMN as a measure of central auditory processing accuracy,” in: Recent Advances in Event- Related Brain Potential Research, C. Ogura, K. Koga, and M. Shimokouchi (eds.), Elsevier, Amsterdam (1996), pp. 3-10.Google Scholar
  26. 26.
    E. Schröger, P. Paavilainen, and R. Näätänen, “Mismatch negativity to changes in a continuous tone with regularly varying frequencies,” Electroencephalogr. Clin. Neurophysiol., 92, No. 2, 140-147 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Paavilainen, M. L. Karlsson, K. Reinikainen, and R. Näätänen, “Mismatch negativity to change in spatial location of an auditory stimulus,” Electroencephalogr. Clin. Neurophysiol., 73, No. 2, 129-141 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    D. L. Woods, K. Alho, and A. Algazi, “Intermodal selective attention. I. Effects on event-related potentials to lateralized auditory and visual stimuli,” Electroencephalogr. Clin. Neurophysiol., 82, No. 5, 341-355 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    I. Czigler, L. Balázs, and L. Pató, “Visual change detection: event-related potentials are dependent on stimulus location in human,” Neurosci. Lett., 346, No. 3, 149-153 (2004).CrossRefGoogle Scholar
  30. 30.
    I. Czigler, L. Balázs, and I. Winkler, “Memorybased detection of task-irrelevant visual changes,” Psychophysiology, 39, No. 6, 869-873 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Tales, P. Newton, T. Troscianko, and S. Butler, “Mismatch negativity in the visual modality,” NeuroReport, 10, No. 8, 3363-3367 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Maekawa, Y. Goto, N. Kinukawa, et al., “Functional characterization of mismatch negativity to a visual stimulus,” Clin. Neurophysiol., 116, No. 10, 2392-2402 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    C. Stagg, P. Hindley, A. Tales, and S. Butler, “Visual mismatch negativity: the detection of stimulus change,” NeuroReport, 15, No. 4, 659-663 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Pazo-Alvarez, E. Amendeno, and F. Cadaveria, “Automatic detection of motion direction change in the human brain,” Eur. J. Neurosci., 19, No. 7, 1978-1986 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Berti and E. Schroger, “A comparison of auditory and visual distraction effects: behavioral and event-related indices,” Cogn. Brain. Res., 10, No. 3, 265-273 (2001).CrossRefGoogle Scholar
  36. 36.
    I. Winkler, I. Czigler, E. Sussman, et al., “Preattentive binding of auditory and visual stimulus features,” J. Cogn. Neurosci., 17, No. 2, 320-339 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    J. J. Barajas, “The effects of age on human P3 latency,” Acta. Otolaryngol., 111, Suppl. 476, 157-160 (1991).CrossRefGoogle Scholar
  38. 38.
    H. Yamamori, O. Okubo, and K. Harada, “Brain evoked potentials of 3-D auditory stimuli,” Pediat. Int., 44, No. 4, 420-426 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • N. Tomio
    • 1
  • T. Fuchigami
    • 1
  • Y. Fujita
    • 1
  • O. Okubo
    • 1
  • H. Mugishima
    • 1
  1. 1.Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan

Personalised recommendations