, Volume 42, Issue 4, pp 294–304 | Cite as

Role of Glutamate and GABA in Mechanisms Underlying Respiratory Control


This review deals with modern concepts on the mechanisms of involvement of main central excitatory and inhibitory neurotransmitters, glutamate and GABA, in the control of the respiratory function.


glutamate GABA dorsal respiratory group ventral respiratory group inspiration expiration central pattern generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Rubin, N. A. Shevtsova, G. B. Ermentrout, et al., “Multiple rhythmic states in a model of the respiratory central pattern generator,” J. Neurophysiol., 101, 2146–2165 (2009).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Kazemi and B. Hoop, “Glutamic acid and γ-aminobutyric acid neurotransmitters in central control of breathing,” J. Appl. Physiol., 70 (1), 1–7 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    L. K. Bak, A. Schousboe, and H. S. Vaagepetersen, “The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer,” J. Neurochem., 98, 641–653 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    J. D. Rothstein, L. Martin, A. I. Levey, et al., “Localization of neuronal and glial glutamate transporters,” Neuron, 13, 713–725 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    C. Rae, N. Hare, W. A. Bubb, et al., “Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation,” J. Neurochem., 85, 503–514 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Hertz, “Glutamate, a neurotransmitter – and so much more. A synopsis of Wierzba III,” Neurochem. Int., 48, 416–425 (2006).PubMedGoogle Scholar
  7. 7.
    R. Balazs, Y. Machiyama, B. J. Hammond, et al., “The operation of the γ-aminobutyrate bypath of tricarboxylic acid cycle in brain tissue in vitro,” Biochem. J., 116, 445–467 (1970).PubMedGoogle Scholar
  8. 8.
    D. L. Martin and K. Rimvall, “Regulation of γ-aminobutyric acid synthesis in the brain,” J. Neurochem., 60, 395–407 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    J. D. Doherty, S. E. Hattox, O. C. Shead, and R. H. Roth, “Identification of endogenous γ-hydroxybutyrate in human and bovine brain and its regional distribution in human, guinea pig, and rhesus monkey brain,” J. Pharmacol. Exp. Ther., 207, 130–139 (1978).PubMedGoogle Scholar
  10. 10.
    G. Battaglioli, H. Liu, and D. L. Martin, “Kinetic differences between the isoforms of glutamate decarboxylase: implication for the regulation of GABA synthesis,” J. Neurochem., 86, 879–887 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    N. Dericioglu, C. L. Garganta, O. A. Petroff, et al., “Blockade of GABA synthesis only affects neural excitability under activated conditions in rat hippocampal slices,” Neurochem. Int., 53, 22–32 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Schousboe, “Pharmacological and functional characterization of astrocytic GABA transport: a short review,” Neurochem. Res., 25, 1241–1244 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Hoop, V. E. Shin, and H. Kazemi, “Relationship between central nervous system hydrogen ion regulation and amino acid metabolism in hypercapnia,” Am. Rev. Respirat. Dis., 132, 45–49 (1983).Google Scholar
  14. 14.
    A. L. Bianchi, M. Denavit-Saubie, and J. Champagnat, “Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters,” Physiol. Rev., 75, 1–45 (1995).PubMedGoogle Scholar
  15. 15.
    J. C. Smith, A. P. L. Abdala, I. A. Rybak, and J. F. R. Paton, “Structural and functional architecture of respiratory networks in the mammalian brainstem,” Phil. Trans. Roy. Soc., 364, 2577–2587 (2009).CrossRefGoogle Scholar
  16. 16.
    C. Bonham, “Neurotransmitters in the CNS control of breathing,” Respir. Physiol., 101, 219–230 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Haji, R. Takeda, and M. Okazaki, “Neuropharmacology of control of respiratory rhythm and pattern in mature mammals,” Pharmacol. Ther., 86, 277–304 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    J. C. Smith, A. P. L. Abdala, H. Koizumi, et al., “Spatial and functional architecture of the mammalian brainstem respiratory network: a hierarchy of three oscillatory mechanisms,” J. Neurophysiol., 98, 3370–3387 (2007).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Onimaru, A. Arata, and I. Homma, “Primary respiratory rhythm-generating neurons in the medulla of brainstemspinal cord preparation from newborn rat,” Brain Res., 445, 314–324 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Onimaru, I. Homma, J. L. Feldman, and W. A. Janczewski, “Point: Counterpoint: The parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generator in the mammal,” J. Appl. Physiol., 100, 2094–2098 (2006).PubMedCrossRefGoogle Scholar
  21. 21.
    P. A. Gray, W. A Janczewski, N. Mellen, et al., “Normal breathing requires pre-Botzinger complex neurokinin-1 receptor expressed neurons,” Nat. Neurosci., 4, 927–930 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    L. C. McKay, W. A. Janczewski, and J. L. Feldman, “Sleepdisordered breathing after target ablation of preBotzinger complex neurons,” Nat. Neurosci., 8, 1142–1144 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Onimaru and I. Homma, “A novel functional neuron group for respiratory rhythm generation in the ventral medulla,” J. Neurosci., 23, 1478–1486 (2003).PubMedGoogle Scholar
  24. 24.
    W. A. Janczewski and J. L. Feldman, “Distinct rhythm generators for inspiration and expiration in the juvenile rat,” J. Physiol., 570, 407–420 (2006).PubMedGoogle Scholar
  25. 25.
    A. Vardhan, A. Kachroo, and H. N. Sapru, “Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses,” Am. J. Physiol., 264, R41–R50 (1993).PubMedGoogle Scholar
  26. 26.
    G. Bohmer, K. Schmid, and W. Schauer, “Evidence for an involvement of NMDA and non-NMDA receptors in synaptic excitation of phrenic motoneurons in the rabbit,” Neurosci. Lett., 130, 271–274 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Saji and M. Miura, “Evidence that glutamate is the transmitter mediating respiratory drive from medullary premotor neurons to phrenic motoneurons: double labeling study in the rat,” Neurosci. Lett., 115, 177–182 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    O. Pierrefiche, A. S. Foutz, J. Champagnat, and M. Denavit-Saubie, “NMDA and non-NMDA receptors may play distinct roles in timing mechanisms and transmission in the feline respiratory network,” J. Physiol., 474, 509–523 (1994).PubMedGoogle Scholar
  29. 29.
    A. S. Foutz, J. Champagnat, and M. Denavit-Saubie, “Involvement of N-methyl-D-aspartate (MNDA) receptors in respiratory rhythmogenesis,” Brain Res., 500, 199–208 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    A. S. Foutz, J. Champagnat, and M. Denavit-Saubie, “N-methyl-D-aspartate (NMDA) receptors control respiratory off-switch in cat,” Neurosci. Lett., 87, 221–226 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    E. E. Nattie and A. Li, “Retrotrapezoid nucleus glutamate injections: long-term stimulation of phrenic activity,” J. Appl. Physiol., 76, 760–772 (1994).PubMedGoogle Scholar
  32. 32.
    E. E. Nattie and A. Li, “Retrotrapezoid nucleus (RTN) metabotropic glutamate receptors and long-term stimulation of ventilatory output. RTN glutamate receptors and breathing,” Adv. Exp. Med. Biol., 393, 39–45 (1995).PubMedGoogle Scholar
  33. 33.
    A. Li and E. E. Nattie, “Prolonged stimulation of respiration by brain stem metabotropic glutamate receptors,” J. Appl. Physiol., 79, 1650–1656 (1995).PubMedGoogle Scholar
  34. 34.
    J. Neubauer, J. E. Melton, and N. H. Edelman, “Modulation of respiration during brain hypoxia,” J. Appl. Physiol., 66, 1462–1470 (1990).Google Scholar
  35. 35.
    A. Mizusawa, H. Ogawa, Y. Kikuchi, et al., “In vivo release of glutamate in nucleus tractus solitarii of the rat during hypoxia,” J. Physiol., 478, 55–66 (1994).PubMedGoogle Scholar
  36. 36.
    I. Soto-Arape, M. D. Burton, and H. Kazemi, “Central amino acid neurotransmitters and hypoxic ventilatory response,” Am. J. Respir. Crit. Care Med., 151, 1113–1120 (1995).PubMedGoogle Scholar
  37. 37.
    D. Gozal, Y. D. Xue, and N. Simakajornboon, “Hypoxia induces c-Fos protein expression in NMDA but not AMPA glutamate receptor labeled neurons within the nucleus tractus solitarii of the conscious rat,” Neurosci. Lett., 262, 93–96 (1999).PubMedCrossRefGoogle Scholar
  38. 38.
    D. W. Richter, P. Schmidt-Garcon, O. Pierrefisch, et al., “Neurotransmitters and neuromodulators controlling the hypoxic ventilatory response in anaesthetized cats,” J. Physiol., 514, 567–578 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    P. N. McWilliam and S. L. Shepeard, “A GABA-mediated inhibition of neurons of nucleus tractus solitarius of the cat that respond to electrical stimulation of the carotid sinus nerve,” Neurosci. Lett., 94, 321–326 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    S. Coles, P. Ernsberger, and T. E. Dick, “A role for NMDA receptors in post-hypoxic frequency decline in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 274, R156–R1555 (1998).Google Scholar
  41. 41.
    F. Hayashi, S. K. Coles, K. B. Batch, et al., “Timedependent phrenic nerve responses to carotid afferent activation: intact vs decerebrated rats,” Am. J. Physiol., 256, R811–R819 (1993).Google Scholar
  42. 42.
    I. Tarakanov, A. Dymecka, and M. Pokorski, “NMDA glutamate receptor antagonism and the ventilatory response to hypoxia in the anesthetized rat,” J. Physiol. Pharmacol., 55, 139–147 (2004).PubMedGoogle Scholar
  43. 43.
    P. Ohtake, J. E. Torres, Y. M. Gozal, et al., “NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat,” J. Appl. Physiol., 84, 853–861 (1998).PubMedGoogle Scholar
  44. 44.
    S. G. Reid and F. L. Powell, “Effects of chronic hypoxia on MK-801-induced changes in the acute hypoxic ventilatory response,” J. Appl. Physiol., 99, 2108–2144 (2005).PubMedCrossRefGoogle Scholar
  45. 45.
    S. R. Reeves, E. Gozal, S. Z. Guo, et al., “Effect of longterm intermittent and sustained hypoxia on hypoxic ventilatory and metabolic response in the adult rat,” J. Appl. Physiol., 95, 1767–1774 (2003).PubMedGoogle Scholar
  46. 46.
    R. El Hasnaoui-Saadani, R. Cardenas Alayza, T. Launay, et al., “Brain stem NO modulates ventilatory acclimatization to hypoxic mice,” J. Appl. Physiol., 103, 1506–1512 (2007).PubMedCrossRefGoogle Scholar
  47. 47.
    R. A. Mueller, D. B. A. Lundberg, G. R. Breese, et al., “The neuropharmacology of respiratory control,” Pharmacol. Rev., 34, 255–285 (1982).PubMedGoogle Scholar
  48. 48.
    C. A. Livingston and A. J. Berger, “Immunohistochemical localization of GABA in neurons projecting to the ventrolateral nucleus of the solitary tract,” Brain Res., 494, 143–150 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    J. Lipski, H. J. Waldvogel, P. Pilowski, and C. Jiang, “GABA-immunoreactive boutons make synapses with inspiratory neurons of the dorsal respiratory group,” Brain Res., 529, 309–314 (1990).PubMedCrossRefGoogle Scholar
  50. 50.
    S. Saha, T. F. C. Batten, and P. N. McWillam, “Glutamate, gamma-aminobutyric acid and tachykinin-immunoreactive synapses in the cat nucleus tractus solitarii,” J. Neurocytol., 24, 55–74 (1995).PubMedCrossRefGoogle Scholar
  51. 51.
    E. G. Merril and L. Fedorko, “Monosynaptic inhibition of phrenic motoneurons: a long descending projection from Botzinger neurons,” J. Neurosci., 4, 2350–2553 (1984).Google Scholar
  52. 52.
    W. Z. Zhan, H. H. Ellenberg, and J. L. Feldman, “Monoaminergic and GABA ergic terminations in phrenic nucleus of rat identified by immunohistochemical labeling,” Neuroscience, 31, 105–113 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Haji, J. E. Remmers, C. Connely, and R. Takeda, “Effects of glycine and GABA on bulbar respiratory neurons of cat,” J. Neurophysiol., 63, 955–965 (1990).PubMedGoogle Scholar
  54. 54.
    J. Champagnat and D.W. Richter, “The role of K+ conductance in expiratory pattern generation in anaesthetized rats,” J. Physiol., 479, 127–138 (1994).PubMedGoogle Scholar
  55. 55.
    L. Grelot, S. Iscoe, and A. L. Bianchi, “Effects of amino acids on the excitability of respiratory bulbospinal neurons in solitary and para-ambigual regions of medulla in cat,” Brain Res., 443, 27 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    E. Ginestal and C. Matute, “Gamma-aminobutyric acidimmunoreactive neurons in the rat trigeminal nuclei,” Histochemistry, 99, 49–55 (1993).PubMedCrossRefGoogle Scholar
  57. 57.
    I. A. Tarakanov, “Sensitivity of the respiratory system to oxygen upon activation of the GABA-ergic cerebral system,” Byull. Éksp. Biol. Med., 123, 264–268 (1997).CrossRefGoogle Scholar
  58. 58.
    I. A. Tarakanov, “Loss of the sensitivity of the respiratory system to carbon dioxide upon activation of the GABAergic cerebral system,” Byull. Éksp. Biol. Med., 123, 385–390 (1997).Google Scholar
  59. 59.
    I. A. Tarakanov, E. A. Golovatyuk, E. R. Tourshaya, and V. A. Safonov, “Formation of periodic apneustic respiration upon activation of the GABA-ergic cerebral system,” Byull. Éksp. Biol. Med., No. 6, 583–587 (1993).Google Scholar
  60. 60.
    I. A. Tarakanov and V. A. Safonov, “Effect of Phenibut on the formation of the respiratory rhythm,” Byull. Éksp. Biol. Med., No. 6, 606–609 (1995).Google Scholar
  61. 61.
    I. A. Tarakanov and V. A. Safonov, “Comparative analysis of changes in respiration and systemic circulation in cats and rats upon activation of GABA receptors,” Sechenov Fiziol. Zh., 84, 300–308 (1998).Google Scholar
  62. 62.
    I. A. Tarakanov and V. A. Safonov, “GABA-ergic mechanisms of disorders in the respiratory rhythm,” Patol. Fiziol. Éks.Ter., 2, 48–54 (1998).Google Scholar
  63. 63.
    J. Hedner, T. Hedner, J. Jonason, and D. Lundberg, “GABA-ergic mechanism in central respiratory control in the anesthetized rat,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 317, 315–320 (1981).CrossRefGoogle Scholar
  64. 64.
    N. K. Yelmen, “The role of gamma-aminobutyric acid and glutamate for hypoxic ventilatory response in anesthetized rabbit,” Tohoku J. Exp. Med., 203, 219–232 (2004).PubMedCrossRefGoogle Scholar
  65. 65.
    J. Champagnat, M. Denavit-Saubie, S. Moyanova, and G. Rondouin, “Involvement of amino acids in periodic inhibitions of bulbar respiratory neurons,” Brain Res., 237, 351–365 (1982).PubMedCrossRefGoogle Scholar
  66. 66.
    J. D. Wood, W. J. Watson, and A. J. Drucker, “The effect of hypoxia on brain gamma-aminobutyric acid levels,” J. Neurochem., 15, 603–608 (1968).PubMedCrossRefGoogle Scholar
  67. 67.
    J. E. Madl and S. M. Royer, “Glutamate dependence of GABA levels in neurons of hypoxic and hypoglycemic rat hippocampal slices,” Neuroscience, 96, 657–664 (2000).PubMedCrossRefGoogle Scholar
  68. 68.
    P. Monin, J. Arranda, R. Bansal, and T. Trippenbach, “Effect of increased brain GABA concentration on breathing in unanesthetized newborn rabbits,” Biol. Neonatal., 76, 168–180 (1999).CrossRefGoogle Scholar
  69. 69.
    I. A. Tarakanov and V. A. Safonov, “Neurohumoral mechanisms of disorders in the central control of respiration,” in: Disregulatory Pathology [in Russian], Meditsina, Moscow (2002), pp. 545–557.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations