, Volume 40, Issue 4, pp 279–287 | Cite as

Disorders in the Cytoskeleton of Astroglia and Neurons in the Rat Brain Induced by Long-Lasting Exposure to Ethanol and Correction of These Shifts by Hydrated Fullerene С60

  • А. A. TikhomirovEmail author
  • G. V. Andrievsky
  • V. S. Nedzvetsky

Using an immunoblotting technique, we examined the content of proteins of intermediate filaments of the cytoskeleton of neurons and astroglial cells and also changes in the polypeptide composition of these proteins in different brain regions of rats subjected to long-term (12 weeks) alcoholization. The sensitivity of these indices to the effect of ethanol in different cerebral structures was in the following sequence: hippocampus > cerebral cortex > cerebellum. The greatest changes in a marker of the astrocyte cytoskeleton (glial fibrillary acidic protein, GFAP) were observed in the hippocampus of alcoholized animals, where the GFAP level was by 72% lower with respect to the control values. In this cerebral region, the content of the neurofilament 210-kdalton subunit also sharply dropped (by 76% with respect to the control). A positive correlation between a decrease in the GFAP content and loss of the neurofilament 210-kdalton subunit was demonstrated. These data show that the organization of the intracellular filamentary system of neurons and gliocytes is disturbed under experimental conditions, and this is one of the probable reasons for cell death in the nerve tissue induced by chronic consumption of ethanol. The use of a hydrated form of fullerene С60 (its molecular/colloid solution) for antioxidant correction of the pathological state of the CNS induced by the above-mentioned toxicant removed, to a considerable extent, negative modifications of cytoskeletal structures and protected astroglial and nerve cells from degeneration.


ethanol alcoholization astrocytes cytoskeleton glial fibrillary acidic protein neurofilaments hydrated fullerene С60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Freeman, “Sculpting the nervous system: glial control of neuronal development,” Curr. Opin. Neurobiol., 16, 119–125 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Makar, M. Nedergaard, A. Preuss, et al., “Vitamin E, ascorbate, glutathione disulfide and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain,” J. Neurochem., 62, 45–53 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Allanson, S. Khatibi, T. Olsson, and E. Hansson, “Acute ethanol exposure induces [Ca2+]i transients, cell swelling, and transformation of actin cytoskeleton in astroglial primary cultures,” J. Neurochem., 76, 472–479 (2001).CrossRefGoogle Scholar
  4. 4.
    T. Fellin and G. Carmignoto, “Neuron-to-astrocyte signalling in the brain represents a distinct multifunctional unit,” J. Physiol., 559, 3–15 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Korbo, “Glial cell loss in the hippocampus of alcoholics,” Alcohol. Clin. Exp. Res., 23, 164–168 (1999).PubMedGoogle Scholar
  6. 6.
    S. Goldman, “Glia as neural progenitor cells,” Trends Neurosci., 26, 590–596 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    A. J. Eisch, M. Barrot, C. A. Schad, et al., “Opiates inhibit neurogenesis in the adult rat hippocampus,” Proc. Natl. Acad. Sci. USA, 97, 7579–7584 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Ohgoh, H. Shimizu, H. Ogura, and J. Nishizawa, “Astroglial trophic support and neuronal cell death: influence of cellular energy level on type of cell death induced by mitochondrial toxin in cultured rat cortical neurons,” J. Neurochem., 75, 925–933 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000),” Neurochem. Res., 25, Nos. 910, 1439–1451 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    R. K. Liem, “Molecular biology of neuronal intermediate filament,” Curr. Opin. Cell Biol., 5, 12–16 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    S. G. Evrard, M. Duhalde-Vega, P. Tagliaferro, et al., “A low chronic exposure induces morphological changes in the adolescent rat brain that are not fully recovered even after a long abstinence: an immunohistochemical study,” Exp. Neurol., 200, 438–459 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    C. E. Teunissen, H. W. Steinbusch, M. Angevaren, et al., “Behavioral correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation,” Neuroscience, 105, 153–167 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    H. W. Kroto, S. Heath, S. C. O’Brien, et al., “C60: Buckminsterfullerene,” Nature, 318, 162 (1985).CrossRefGoogle Scholar
  14. 14.
    L. B. Piotrovskii and O. I. Kiselev, Fullerenes in Biology [in Russian], Rostok, Saint Petersburg, (2006).Google Scholar
  15. 15.
    I. Wang, L. Tai, D. Lee, et al., “C60 and water-soluble fullerene derivatives as antioxidants against radicalinitiated lipid peroxidation,” J. Med. Chem., 42, 4614– 4620 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    A. A. Tikhomirov, V. S. Nedzvetskii, M. V. Lipka, et al., “Chronic alcoholization-induced damage to astroglia and intensification of lipid peroxidation in the rat brain: protector effect of hydrated form of fullerene C60,” Neurophysiology, 39, No. 2, 105–111 (2007).CrossRefGoogle Scholar
  17. 17.
    G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, et al., “On the production of an aqueous colloidal solution of fullerenes,” J. Chem. Soc. Chem. Commun., 12, 1281–1282 (1995).CrossRefGoogle Scholar
  18. 18.
    M. V. Avdeev, A. A. Khokhryakov, T. V. Tropin, et al., “Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering,” Langmuir, 20, 4363–4368 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    G. V. Andrievsky, V. K. Klochkov, E. L. Karyakina, and N. O. Mchedlov-Petrossyan, “Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy,” Chem. Phys. Lett., 300, 392–396 (1999).CrossRefGoogle Scholar
  20. 20.
    A. D. Roslyakov, G. V. Andrievsky, A. Yu. Petrenko, L. T. Malaya, “Cytotoxic and antioxidant properties of aqueous solutions of native fullerenes in in vitro systems,” Zh. Akad. Med. Nauk Ukrainy, 5, 338–346 (1999).Google Scholar
  21. 21.
    G. V. Andrievsky, V. K. Klochkov, A. Bordyuh, and G. I. Dovbeshko, “Comparative analysis of two aqueouscolloidal solutions of C60 fullerene with help of FT-IR reflectance and UV-Vis spectroscopy,” Chem. Phys. Lett., 364, 8–17 (2002).CrossRefGoogle Scholar
  22. 22.
    G. V. Andrievsky, V. K. Klochkov, and L. I. Derevyanchenko, “Is C60 fullerene molecule toxic?!” Fuller., Nanotub. Carbon Nanostruct., 13, 363–376 (2005).CrossRefGoogle Scholar
  23. 23.
    A. Jensen, S. Wilson, and D. Schuster, “Biological application of fullerenes – a review,” Bioorg. Med. Chem. Lett., 4, 767–779 (1996).CrossRefGoogle Scholar
  24. 24.
    R. V. Bensasson, M. Brettreich, J. Frederiksen, et al., “Reactions of e(aq), CO2 •−, HO•−, O2 •− and O2 (1g) with a dendro[60]fullerene and C60[C(COOH)2]n (n = 2–6),” Free Radical Biol. Med., 29, 26–33 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Bosi, T. Da Ros, G. Spalluto, and M. Prato, “Fullerene derivatives: an attractive tool for biological applications (invited review),” Eur. J. Med. Chem., 38, 913–923 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    S. S. Ali, J. I. Hardt, K. L. Quick, et al., “A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties,” Free Radical Biol. Med., 37, 1191–1202 (2004).CrossRefGoogle Scholar
  27. 27.
    A. Isakovic, Z. Markovic, N. Nikolic, et al., “Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation,” Biomaterials, 27, 5049–5058 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    J. J. Ryan, H. R. Bateman, A. Stover, et al., “Fullerene nanomaterials inhibit the allergic response,” J. Immunol., 179, 665–672 (2007).PubMedGoogle Scholar
  29. 29.
    M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding,” Analyt. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    V. S. Nedzvetsky and P. O. Nerush, “The protein of glial intermediate filaments in different areas of the rat brain at experimental neurosis,” Neurophysiology, 31, No. 2, 94–97 (1999).CrossRefGoogle Scholar
  31. 31.
    D. E. Saunders, J. A. Di Cerbo, J. R. Williams, and J. H. Hannigan, “Alcohol reduces neurofilament protein levels in primary cultured hippocampal neurons,” Alcohol, 14, 519–526 (1997).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Iwamoto, M. Bundo, M. Yamamoto, et al., “Decreased expression of NEFH and PCP4/PEP19 in the prefrontal cortex of alcoholics,” Neurosci. Res., 49, 379–385 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    R. A. Nixon and T. B. Shea, “Dynamics of neuronal intermediate filaments: a developmental perspective,” Cell Motil. Cytoskeleton, 22, 81–91 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    H. Franke, H. Kittner, P. Berger, et al., “The reaction of astrocytes and neurons in the hippocampus of adult rats during chronic ethanol treatment and correlations to behavioral impairments,” Alcohol, 14, 445–454 (1997).PubMedCrossRefGoogle Scholar
  35. 35.
    J. J. Miguel-Hidalgo, “Lower packing density of glial fibrillary acidic protein-immunoreactive astrocytes in the prelimbic cortex of alcohol-naive and alcoholdrinking alcohol-preferring rats as compared with alcohol nonpreferring and Wistar rats,” Alcohol. Clin. Exp. Res., 29, 766–772 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    S. M. Mooney and M. W. Miller, “Ethanol-induced neuronal death in organotypic cultures of rat cerebral cortex,” Dev. Brain Res., 147, 135–141 (2003).CrossRefGoogle Scholar
  37. 37.
    B. Seri, J. M. Garcia-Verdugo, B. S. McEwen, and A. Alvarez-Buylla, “Astrocytes give rise to new neurons in the adult mammalian hippocampus,” J. Neurosci., 21, 7153–7160 (2001).PubMedGoogle Scholar
  38. 38.
    A. Y. Sun, M. Ingelman-Sunberg, E. Neve, et al., “Ethanol and oxidative stress,” Alcohol. Clin. Exp. Res., 25, 237–243 (2001).Google Scholar
  39. 39.
    L. L. Dugan, E. G. Lovett, K. L. Quick, et al., “Fullerenebased antioxidants and neurodegenerative disorders,” Parkinson. Relat. Disord., 7, 243–246 (2001).CrossRefGoogle Scholar
  40. 40.
    A. M.-Y. Lin, S. F. Fang, S. Z. Lin, et al., “Local carboxyfullerene protects cortical infarction in rat brain,” Neurosci. Res., 43, 317–321 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    I. Y. Podolski, Z. A. Podlubnaya, E. A. Kosenko, et al., “Effects of hydrated forms of C60 fullerene on amyloid β-peptide fibrillization in vitro and performance of the cognitive task,” J. Nanosci. Nanotech., 7, Nos. 4/5, 1479–1485 (2007).CrossRefGoogle Scholar
  42. 42.
    K. L. Quick, S. S. Ali, R. Arch, et al., “A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice,” Neurobiol. Aging, 29, 117–128 (2008).PubMedCrossRefGoogle Scholar
  43. 43.
    T. Mori, S. Ito, M. Namiki, et al., “Involvement of free radical followed by the activation of phospholipase A2 in the mechanism that underlies the combined effects of methamphetamine and morphine on subacute toxicity or lethality in mice: comparison of the therapeutic potential of fullerene, mepacrine, and cooling,” Toxicology, 236, 149–157 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • А. A. Tikhomirov
    • 1
    Email author
  • G. V. Andrievsky
    • 2
  • V. S. Nedzvetsky
    • 1
  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine
  2. 2.ІСМА, NTK “Institute of Monocrystals”National Academy of Sciences of UkraineKhar’kovUkraine

Personalised recommendations