Advertisement

Neurophysiology

, Volume 39, Issue 2, pp 105–111 | Cite as

Chronic alcoholization-induced damage to astroglia and intensification of lipid peroxidation in the rat brain: Protector effect of hydrated form of fullerene C60

  • A. A. TikhomirovEmail author
  • V. S. NedzvetskiiEmail author
  • M. V. Lipka
  • G. V. AndrievskiiEmail author
  • V. K. Klochkov
Article

Abstract

We studied the intensity of lipid peroxidation (LP) and the amount of a marker of astrocytes (glial fibrillary acidic protein, GFAP) in tissues of the rat brain under conditions of long-lasting consumption (12 weeks) of ethyl alcohol, as well as the protective effects of peroral administration of hydrated forms of fullerene ?60 (?60HyFn, FWS, fullerene water solutions). Consumption of ethanol resulted in a rise in the amount of molecular markers of oxidative stress (thiobarbiturate-active compounds) in the cerebral tissues. The level of the filamentous GFAP form in the hippocampus and cerebral cortex of alcoholized animals decreased significantly, which can be a result of death of the population of GFAP-imunnoreactive astrocytes in the brain. In the brain of rats after systematic consumption of both ethanol and an aqueous solution of hydrated fullerenes ?60, the amounts of products of lipid peroxidation and of the astroglial marker did not differ significantly from the respective indices in the control animals. Our data demonstrate the efficiency of hydrated fullerenes as pathogenetic therapeutic remedies for elimination of the negative effects of ethyl alcohol on the CNS.

Keywords

chronic alcoholization hydrated fullerenes C60 oxidative stress glial fibrillary acidic protein astrocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Burov and N. N. Vedernikova, Neurochemistry and Pharmacology of Alcoholism [in Russian], Meditsina, Moscow (1985).Google Scholar
  2. 2.
    A. Augustyniak, K. Michalak, and E. Skrzydlewska, “The action of oxidative stress induced by ethanol on the central nervous system (CNS),” Postepy Hig. Med. Dosw., 59, 464–471 (2005).Google Scholar
  3. 3.
    L. Meda, P. Baron, and G. Scarlato, “Glial activation in Alzheimer’s disease: the role of A-beta and its associated proteins,” Neurobiol. Aging, 22, No. 6, 885–893 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-Thirty-One years (1969–2000),” Neurochem. Res., 25, Nos. 9/10, 1439–1451 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Wentzel, U. Rydberg, and U. J. Eriksson, “Antioxidative treatment diminishes ethanol-induced congenital malformations in the rat,” Alcohol. Clin. Exp. Res., 30, No. 10, 1752–1760 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    H. W. Kroto, S. Heath, S. C. O’Brien, et al., “C60: Buckminsterfullerene,” Nature, 318, 162–162 (1985).CrossRefGoogle Scholar
  7. 7.
    V. I. Trefilov, D. V. Shchur, B. P. Tarasov, et al., Fullerenes as the Basis for Futuristic Materials [in Russian], Institute of Polymer Materials of the Natl. Acad. Sci. of Ukraine and Institute of Polymer Chemical Substances of the Russ. Acad. Sci., Kyiv (2001).Google Scholar
  8. 8.
    P. J. Krustic, E. Wasserman, P. N. Keizer, et al., “Radical reactions of C60,” Science, 254, 1183–1185 (1991).CrossRefGoogle Scholar
  9. 9.
    L. B. Piotrovskii, “Fullerenes in biology and medicine,” in: Fundamental Directions of Molecular Medicine [in Russian], Rostok, Saint Petersburg (2005), pp. 197–268.Google Scholar
  10. 10.
    G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, et al., “On the production of an aqueous colloidal solution of fullerenes,” J. Chem. Soc. Chem. Commun., 12, 1281–1282 (1995).CrossRefGoogle Scholar
  11. 11.
    G. V. Andrievsky, V. K. Klochkov, A. B. Bordyuh, and G. I. Dovbeshko, “Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR re?ectance and UV-Vis spectroscopy,” Chem. Phys. Lett., 364, 8–17 (2002).CrossRefGoogle Scholar
  12. 12.
    I. Y. Podolski, E. V. Kondratjeva, S. S. Gurin, et al., “Fullerene C60 ?omplexed with poly(N-vinylpyrrolidone) (C60/PVP) prevents the disturbance of long-term memory consolidation induced by cycloheximide,” Fullerenes, Nanotubes, Carbon Nanostruct., 12, Nos. 1/2, 421–424 (2005).Google Scholar
  13. 13.
    I. Y. Podolski, Z. A. Podlubnaya, E. A. Kosenko, et al., “Effects of hydrated forms of C60 fullerene on amyloid β-peptide ?brillization in vitro and performance of the cognitive task,” J. Nanosci. Nanotech., 7, Nos. 4/5, 1479–1485 (2007).CrossRefGoogle Scholar
  14. 14.
    G. V. Andrievsky, “Surprising positive biological effects of hydrated C60 fullerene as the basis for creation of a wide spectrum of products with unique bioactivity,” in: Fullerenes and Atomic Clusters (St. Petersburg, June 27–July 1), Saint Petersburg (2005), p. 235.Google Scholar
  15. 15.
    V. S. Nedzvetsky, M. Tuzcu, A. Yasar, et al., “Effects of vitamin E against aluminum neurotoxicity in rats,” Biochemistry, 71, No. 3, 239–244 (2006).PubMedGoogle Scholar
  16. 16.
    M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, 227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Towbin, “Immunoblotting-an update,” Biochem. Soc. Trans., 16, No. 2, 131 (1988).PubMedGoogle Scholar
  19. 19.
    V. I. Lushchak, T. V. Bagnyukova, and O. V. Lushchak, “Indices of oxidative stress. Thiobarbiturate-active products and carbonyl groups of proteins,” Ukr. Biokhim. Zh., 76, No. 3, 136–141 (2004).Google Scholar
  20. 20.
    S. N. Lapach, A. V. Chubenko, and P. N. Babich, Statistical Techniques in Medico-Biological Studies with the Use of Excel [in Russian], Morion, Kyiv (2000).Google Scholar
  21. 21.
    S. Gemma, S. Vichi, and E. Testai, “Individual susceptibility and alcohol effects: biochemical and genetic aspects,” Ann. Ist. Super Sanita, 42, No. 1, 8–16 (2006).PubMedGoogle Scholar
  22. 22.
    A. I. Cederbaum, “CYP2E1-biochemical and toxicological aspects and role in alcohol-induced liver injury,” Mount Sinai J. Med., 73, No. 4, 657–672 (2006).Google Scholar
  23. 23.
    G. Baydas, A. Yasar, and M. Tuzcu, “Comparison of the impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats,” J. Pineal Res., 39, No. 4, 346–352 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    L. L. Dugan, E. G. Lovett, K. L. Quick, et al., “Fullerene-based antioxidants and neurodegenerative disorders,” Parkinsonism Relat. Disord., 7, 243–246 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    T. H. Ueng, J. J. Kang, H. W. Wang, et al., “Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60,” Toxicol. Lett., 93, 29–37 (1997).PubMedCrossRefGoogle Scholar
  26. 26.
    L. L. Dugan, D. M. Turetsky, C. Du, et al., “Carboxyfullerenes as neuroprotective agents,” Proc. Natl. Acad. Sci. USA, 94, 9434–9439 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    D. J. Wolff, C. M. Barbieri, C. F. Richardson, and D. I. Schuster, “Trisamine C60-fullerene adducts inhibit neuronal nitric oxide synthase by acting as highly potent calmodulin antagonist,” Arch. Biochem. Biophys., 399, No. 2, 130–141 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Gharbi, M. Pressac, M. Hadchouel, et al., “[60] Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity,” NanoLett., 5, No. 12, 2578–2585 (2005).Google Scholar
  29. 29.
    G. V. Andrievsky, V. K. Klochkov, and L. I. Derevyanchenko, “Is C60 fullerene molecule toxic?” Fullerenes, Nanotubes, Carbon Nanostruct., 13, No. 4, 363–376 (2005).CrossRefGoogle Scholar
  30. 30.
    J. J. Miguel-Hidalgo, “Lower packing density of glial fibrillary acidic protein-immunoreactive astrocytes in the prelimbic cortex of alcohol-naive and alcohol-drinking alcohol-preferring rats as compared with alcohol nonpreferring and Wistar rats,” Alcohol. Clin. Exp. Res., 29, 766–772 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    P. L. Hoffman, M. Miles, H. J. Edenberg, et al., “Gene expression in brain: a window on ethanol dependence, neuroadaptation, and preference,” Alcohol. Clin. Exp. Res., 27, 155–168 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    H. M. Huang, H. C. Ou, S. J. Hsieh, and L. Y. Chiang, “Blockade of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60_in PC12_cells,” Life Sci., 66, No. 16, 1525–1533 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    K. Kaneko, A. Nakamura, K. Yoshida, et al., “Glial brillary acidic proteinis greatly modi?ed by oxidative stress in aceruloplasminemia brain,” Free Rad. Res., 36, No. 3, 303–306 (2002).CrossRefGoogle Scholar
  34. 34.
    G. Baidas, E. Donder, M. Kiliboz, et al., “Neurodefense by α-lipoic acid in streptozotocin-induced diabetes,” Biokhimia, 69, No. 9, 1233–1238 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Dnepropetrovsk National UniversityUkraine
  2. 2.ISMA, Institute of MonocrystalsNational Academy of Sciences of UkraineKhar’kovUkraine

Personalised recommendations