Skip to main content

Advertisement

Log in

The contribution of ketone bodies to glycolytic inhibition for the treatment of adult and pediatric glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GBM) remains one of the most lethal primary brain tumors in children and adults. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs).

Methods

Gene expression data was obtained from the online patient-histology database, GlioVis. GSC mitochondria morphology was examined by TEM. Cell viability and effect on GSC self-renewal was determined via MTS assay and neurosphere assay, respectively. Proteins were evaluated by Western Blot.

Results

Enzymes necessary for ketone catabolism (BDH1, OXCT1 and ACAT1) are significantly downregulated in adult and pediatric GBM. GSC mitochondrial ultrastructure suggested defects in oxidative phosphorylation. Treatment of both GBM and GSC cell lines resulted in dose-dependent decreases in viability in response to glycolytic inhibitor 2-deoxy-D-glucose (2-DG), and ketone body Acetoacetate (AA), but not β-hydroxybutyrate (βHB). AA induced apoptosis was confirmed by western blot analysis, indicating robust caspase activation and PARP cleavage. AA reduced neurosphere formation at concentrations as low as 1 mM. Combined treatment of low dose 2-DG (50 μM) with AA resulted in more cell death than either treatment alone. The effect was greater than additive at low concentrations of AA, reducing viability approximately 50% at 1 mM AA. AA was found to directly upregulate mitochondrial uncoupling protein 2 (UCP2), which may explain this potential drug synergism via multi-faceted inhibition of the glycolytic pathway.

Conclusion

Targeting the metabolic pathway of GBM via glycolytic inhibition in conjunction with ketogenic diet or exogenous ketone body supplementation warrants further investigation as a promising adjunctive treatment to conventional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  3. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19:v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217. https://doi.org/10.1101/gad.261982.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gimple RC, Bhargava S, Dixit D, Rich JN (2019) Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev 33(11–12):591–609. https://doi.org/10.1101/gad.324301.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duman C, Yaqubi K, Hoffmann A, Acikgoz AA, Korshunov A, Bendszus M, Herold-Mende C, Liu HK, Alfonso J (2019) Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab 30(2):274–289. https://doi.org/10.1016/j.cmet.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  8. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530. https://doi.org/10.1085/jgp.8.6.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, la Fougere C, Pope W, Law I, Arbizu J, Chamberlain MC, Vogelbaum M, Ellingson BM, Tonn JC (2016) Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18(9):1199–1208. https://doi.org/10.1093/neuonc/now058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boutrid H, Jockovich ME, Murray TG, Pina Y, Feuer WJ, Lampidis TJ, Cebulla CM (2008) Targeting hypoxia, a novel treatment for advanced retinoblastoma. Invest Ophthalmol Vis Sci 49(7):2799–2805. https://doi.org/10.1167/iovs.08-1751

    Article  PubMed  Google Scholar 

  11. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-Deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64(1):31–34. https://doi.org/10.1158/0008-5472.can-03-3294

    Article  CAS  PubMed  Google Scholar 

  12. Dwarakanath BS, Singh D, Banerji AK, Sarin R, Venkataramana NK, Jalali R, Vishwanath PN, Mohanti BK, Tripathi RP, Kalia VK, Jain V (2009) Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J Cancer Res Ther 5(Suppl 1):S21–26. https://doi.org/10.4103/0973-1482.55136

    Article  CAS  PubMed  Google Scholar 

  13. Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25(2):262–284. https://doi.org/10.1016/j.cmet.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339(6116):211–214. https://doi.org/10.1126/science.1227166

    Article  CAS  PubMed  Google Scholar 

  15. Kanikarla-Marie P, Jain SK (2015) Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell Physiol Biochem 35(1):364–373. https://doi.org/10.1159/000369702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nebeling LC, Miraldi F, Shurin SB, Lerner E (1995) Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 14(2):202–208. https://doi.org/10.1080/07315724.1995.10718495

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U (2011) Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab (Lond) 8(1):54. https://doi.org/10.1186/1743-7075-8-54

    Article  CAS  Google Scholar 

  18. Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, Seyfried TN (2010) Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab (Lond) 7:33. https://doi.org/10.1186/1743-7075-7-33

    Article  CAS  Google Scholar 

  19. Gersey ZC, Rodriguez GA, Barbarite E, Sanchez A, Walters WM, Ohaeto KC, Komotar RJ, Graham RM (2017) Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 17(1):99. https://doi.org/10.1186/s12885-017-3058-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sansalone L, Veliz EA, Myrthil NG, Stathias V, Walters W, Torrens II, Schurer SC, Vanni S, Leblanc RM, Graham RM (2019) Novel curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers (Basel). https://doi.org/10.3390/cancers11030357

    Article  Google Scholar 

  21. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403. https://doi.org/10.1016/j.ccr.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  22. Shah SS, Rodriguez GA, Musick A, Walters WM, de Cordoba N, Barbarite E, Marlow MM, Marples B, Prince JS, Komotar RJ, Vanni S, Graham RM (2019) Targeting glioblastoma stem cells with 2-deoxy-D-glucose (2-DG) potentiates radiation-induced unfolded protein response (UPR). Cancers (Basel). https://doi.org/10.3390/cancers11020159

    Article  PubMed  Google Scholar 

  23. Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M (2017) GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol 19(1):139–141. https://doi.org/10.1093/neuonc/now247

    Article  CAS  PubMed  Google Scholar 

  24. Graham RM, Hernandez F, Puerta N, De Angulo G, Webster KA, Vanni S (2016) Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp Mol Med 48:e210. https://doi.org/10.1038/emm.2015.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang HT, Olson LK, Schwartz KA (2013) Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab (Lond) 10(1):47. https://doi.org/10.1186/1743-7075-10-47

    Article  CAS  Google Scholar 

  26. Nowicki MO, Dmitrieva N, Stein AM, Cutter JL, Godlewski J, Saeki Y, Nita M, Berens ME, Sander LM, Newton HB, Chiocca EA, Lawler S (2008) Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro Oncol 10(5):690–699. https://doi.org/10.1215/15228517-2008-041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou CH, Chou AK, Lin CC, Chen WJ, Wei CC, Yang MC, Hsu CM, Lung FW, Loh JK, Howng SL, Hong YR (2012) GSK3beta regulates Bcl2L12 and Bcl2L12A anti-apoptosis signaling in glioblastoma and is inhibited by LiCl. Cell Cycle 11(3):532–542. https://doi.org/10.4161/cc.11.3.19051

    Article  CAS  PubMed  Google Scholar 

  28. Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P Jr, Hemmings BA, Merlo A, Lino MM (2009) GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS ONE 4(10):e7443. https://doi.org/10.1371/journal.pone.0007443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Savage MW, Dhatariya KK, Kilvert A, Rayman G, Rees JA, Courtney CH, Hilton L, Dyer PH, Hamersley MS, Joint British Diabetes S (2011) Joint British Diabetes Societies guideline for the management of diabetic ketoacidosis. Diabet Med 28(5):508–515. https://doi.org/10.1111/j.1464-5491.2011.03246.x

    Article  CAS  PubMed  Google Scholar 

  30. Poff AM, Rho JM, D'Agostino DP (2019) Ketone administration for seizure disorders: history and rationale for ketone esters and metabolic alternatives. Front Neurosci 13:1041. https://doi.org/10.3389/fnins.2019.01041

    Article  PubMed  PubMed Central  Google Scholar 

  31. Randle PJ, England PJ, Denton RM (1970) Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J 117(4):677–695. https://doi.org/10.1042/bj1170677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klement RJ (2017) Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol 34(8):132. https://doi.org/10.1007/s12032-017-0991-5

    Article  PubMed  Google Scholar 

  33. Weber DD, Aminazdeh-Gohari S, Kofler B (2018) Ketogenic diet in cancer therapy. Aging (Albany NY) 10(2):164–165. https://doi.org/10.18632/aging.101382

    Article  Google Scholar 

  34. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W (2014) Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neurooncol 117(1):125–131. https://doi.org/10.1007/s11060-014-1362-0

    Article  CAS  PubMed  Google Scholar 

  35. Poff AM, Ari C, Arnold P, Seyfried TN, D'Agostino DP (2014) Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer 135(7):1711–1720. https://doi.org/10.1002/ijc.28809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Kurtoglu M, Leon-Annicchiarico CL, Munoz-Pinedo C, Barredo J, Leclerc G, Merchan J, Liu X, Lampidis TJ (2016) Combining 2-deoxy-D-glucose with fenofibrate leads to tumor cell death mediated by simultaneous induction of energy and ER stress. Oncotarget 7(24):36461–36473. https://doi.org/10.18632/oncotarget.9263

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, Eddy S, Goodin S, White E, Dipaola RS (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70(13):1388–1394. https://doi.org/10.1002/pros.21172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, Kroll S, Jung DT, Kurtoglu M, Rosenblatt J, Lampidis TJ (2013) A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71(2):523–530. https://doi.org/10.1007/s00280-012-2045-1

    Article  CAS  PubMed  Google Scholar 

  39. Voss M, Lorenz NI, Luger AL, Steinbach JP, Rieger J, Ronellenfitsch MW (2018) Rescue of 2-deoxyglucose side effects by ketogenic diet. Int J Mol Sci. https://doi.org/10.3390/ijms19082462

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, Singh PK (2014) Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2:18. https://doi.org/10.1186/2049-3002-2-18

    Article  PubMed  PubMed Central  Google Scholar 

  41. Du X, Shi Z, Peng Z, Zhao C, Zhang Y, Wang Z, Li X, Liu G, Li X (2017) Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows. J Cell Physiol 232(12):3296–3308. https://doi.org/10.1002/jcp.25773

    Article  CAS  PubMed  Google Scholar 

  42. Fine EJ, Miller A, Quadros EV, Sequeira JM, Feinman RD (2009) Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int 9:14. https://doi.org/10.1186/1475-2867-9-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sreedhar A, Petruska P, Miriyala S, Panchatcharam M, Zhao Y (2017) UCP2 overexpression enhanced glycolysis via activation of PFKFB2 during skin cell transformation. Oncotarget 8(56):95504–95515. https://doi.org/10.18632/oncotarget.20762

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marsh J, Mukherjee P, Seyfried TN (2008) Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet. Nutr Metab (Lond) 5:33. https://doi.org/10.1186/1743-7075-5-33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our wonderful laboratory volunteers Danisette Torres, Marie Feliu, Wildlif Bayard, Katrina Kostenko, Ingrid Torrens, Wanda Gonzalez, Denis Ortega Ioni, Nelson Abarca, Fedelene Camille, Gabriel Cortez, Jessica Wein, and Michael Cardone for their contributions to our research efforts.

Funding

Mystic Force Foundation provided salary support for RMG and cost of all materials/reagents required for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina M. Graham.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Patient-derived cell lines were obtained from resected tumors following Institutional Review Board (IRB) at the University of Miami approval and patient written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallejo, F.A., Shah, S.S., de Cordoba, N. et al. The contribution of ketone bodies to glycolytic inhibition for the treatment of adult and pediatric glioblastoma. J Neurooncol 147, 317–326 (2020). https://doi.org/10.1007/s11060-020-03431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03431-w

Keywords

Navigation