Advertisement

Journal of Neuro-Oncology

, Volume 146, Issue 2, pp 265–273 | Cite as

Difference in the hypoxic immunosuppressive microenvironment of patients with neurofibromatosis type 2 schwannomas and sporadic schwannomas

  • Ryota Tamura
  • Yukina Morimoto
  • Mizuto Sato
  • Yuki Kuranari
  • Yumiko Oishi
  • Kenzo Kosugi
  • Kazunari Yoshida
  • Masahiro TodaEmail author
Laboratory Investigation

Abstract

Background

Neurofibromatosis type 2 (NF2) patients uniformly develop multiple schwannomas. The tumor-microenvironment (TME) is associated with hypoxia and consists of immunosuppressive cells, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs). The hypoxic TME of NF2 schwannomas remains unclear. In addition, no comparative study has investigated immunosuppressive cells in NF2 and sporadic schwannomas.

Methods

In 22 NF2 and 21 sporadic schwannomas, we analyzed the immunohistochemistry for Ki-67, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor receptor 1 (VEGFR1) and VEGFR2, platelet derived growth factor receptor-beta (PDGFR-β), programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1), Foxp3, CD163, CD3, and CD8 to assess the immunosuppressive TME.

Results

Most vessels in sporadic schwannomas exhibited slight or negative VEGFR1 and 2 expressions with pericytes coverage. In contrast, large vessels in NF2 schwannomas exhibited strong VEGFR1 and 2 expressions without pericytes. The number of CD3+, CD8+, and CD163+ cells was significantly higher in NF2 schwannomas than in sporadic ones. The expression of PD-L1 and nestin positive cell ratio was higher in NF2 schwannomas than that in sporadic ones. The number of CD163+ cells, nestin positive cell ratio, and HIF-1α expression were significantly associated with shorter progression-free survival in NF2 schwannomas.

Conclusions

This study presents the clinicopathological features of the differences in immunosuppressive cells and the expression of immune checkpoint molecules between NF2 and sporadic schwannomas. Hypoxic TME was first detected in NF2-schwannomas, which was associated with the tumor progression.

Keywords

NF2 Schwannoma Hypoxia PD-1 PD-L1 Treg: TAM 

Notes

Acknowledgements

The authors greatly thank Ms. Naoko Tsuzaki at Department of Neurosurgery, Keio University School of Medicine, for technical assistance of laboratory works.

Funding

This work was supported in part by grants from the Japan Society for the Promotion of Science (JSPS) (17H04306 to M.T.), and by the Japan Agency for Medical Research and Development (19lm0203088h0001 to M.T.).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Picry A, Bonne NX, Ding J, Aboukais R, Lejeune JP, Baroncini M, Dubrulle F, Vincent C (2016) Long-term growth rate of vestibular schwannoma in neurofibromatosis 2: a volumetric consideration. Laryngoscope 126:2358–2362PubMedGoogle Scholar
  2. 2.
    Antinheimo J, Haapasalo H, Seppälä M, Sainio M, Carpen O, Jääskeläinen J (1995) Proliferative potential of sporadic and neurofibromatosis 2-associated schwannomas as studied by MIB-1 (Ki-67) and PCNA labeling. J Neuropathol Exp Neurol 54:776–782PubMedGoogle Scholar
  3. 3.
    Mautner VF, Baser ME, Thakkar SD, Feigen UM, Friedman JM, Kluwe L (2002) Vestibular schwannoma growth in patients with neurofibromatosis Type 2: a longitudinal study. J Neurosurg 96:223–228PubMedGoogle Scholar
  4. 4.
    Evans DG, Baser ME, O'Reilly B, Rowe J, Gleeson M, Saeed S, King A, Huson SM, Kerr R, Thomas N, Irving R, MacFarlane R, Ferner R, McLeod R, Moffat D, Ramsden R (2005) Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br J Neurosurg 19:5–12PubMedGoogle Scholar
  5. 5.
    Seferis C, Torrens M, Paraskevopoulou C, Psichidis G (2014) Malignant transformation in vestibular schwannoma: report of a single case, literature search, and debate. J Neurosurg 121:160–166PubMedGoogle Scholar
  6. 6.
    Plotkin SR, Stemmer-Rachamimov AO, Barker FG 2nd, Halpin C, Padera TP, Tyrrell A, Sorensen AG, Jain RK, di Tomaso E (2009) Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 361:358–367PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tamura R, Fujioka M, Morimoto Y, Ohara K, Kosugi K, Oishi Y, Sato M, Ueda R, Fujiwara H, Noji S, Oishi N, Ogawa K, Kawakami Y, Ohira T, Yoshida K, Toda M (2019) A VEGF receptor vaccine demonstrates preliminary efficacy in Neurofibromatosis type 2. Nat Commun 10:5758PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103PubMedGoogle Scholar
  10. 10.
    Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–4886PubMedGoogle Scholar
  11. 11.
    Iwai Y, Okazaki T, Nishimura H, Kawasaki A, Yagita H, Honjo T (2002) Microanatomical localization of PD-1 in human tonsils. Immunol Lett 83:215–220PubMedGoogle Scholar
  12. 12.
    Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T (2003) PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 198:39–50PubMedPubMedCentralGoogle Scholar
  13. 13.
    Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139–148PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ziyad S, Iruela-Arispe ML (2011) Molecular mechanisms of tumor angiogenesis. Genes Cancer 2:1085–1096PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tamura R, Tanaka T, Akasaki Y, Murayama Y, Yoshida K, Sasaki H (2019) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol 37:2PubMedGoogle Scholar
  16. 16.
    Ahmad Z, Brown CM, Patel AK, Ryan AF, Ongkeko R, Doherty JK (2010) Merlin knockdown in human Schwann cells: clues to vestibular schwannoma tumorigenesis. Otol Neurotol. 31:460–466PubMedPubMedCentralGoogle Scholar
  17. 17.
    de Vries M, Briaire-de Bruijn I, Malessy MJ, de Bruïne SF, van der Mey AG, Hogendoorn PC (2013) Tumor-associated macrophages are related to volumetric growth of vestibular schwannomas. Otol Neurotol 34:347–352PubMedGoogle Scholar
  18. 18.
    Lewis D, Roncaroli F, Agushi E, Mosses D, Williams R, Li KL, Zhu X, Hinz R, Atkinson R, Wadeson A, Hulme S, Mayers H, Stapleton E, Lloyd SKL, Freeman SR, Rutherford SA, Hammerbeck-Ward C, Evans DG, Pathmanaban O, Jackson A, King AT, Coope DJ (2019) Inflammation and vascular permeability correlate with growth in sporadic vestibular schwannoma. Neuro Oncol 21:314–325PubMedGoogle Scholar
  19. 19.
    Saito K, Kato M, Susaki N, Nagatani T, Nagasaka T, Yoshida J (2003) Expression of Ki-67 antigen and vascular endothelial growth factor in sporadic and neurofibromatosis type 2-associated schwannomas. Clin Neuropathol 22:30–34PubMedGoogle Scholar
  20. 20.
    Schulz A, Büttner R, Hagel C, Baader SL, Kluwe L, Salamon J, Mautner VF, Mindos T, Parkinson DB, Gehlhausen JR, Clapp DW, Morrison H (2016) The importance of nerve microenvironment for schwannoma development. Acta Neuropathol 132:289–307PubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang S, Liechty B, Patel S, Weber JS, Hollmann TJ, Snuderl M, Karajannis MA (2018) Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 138:183–190PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tamura R, Ohara K, Morimoto Y, Kosugi K, Oishi Y, Sato M, Yoshida K, Toda M (2019) PITX2 expression in non-functional pituitary neuroendocrine tumor with cavernous sinus invasion. Endocr. Pathol 30:81–89PubMedGoogle Scholar
  23. 23.
    Tamura R, Tanaka T, Miyake K, Tabei Y, Ohara K, Sampetrean O, Kono M, Mizutani K, Yamamoto Y, Murayama Y, Tamiya T, Yoshida K, Sasaki H (2016) Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget 7:52423–52435PubMedPubMedCentralGoogle Scholar
  24. 24.
    Tamura R, Tanaka T, Ohara K, Miyake K, Morimoto Y, Yamamoto Y, Kanai R, Akasaki Y, Murayama Y, Tamiya T, Yoshida K, Sasaki H (2019) Persistent restoration to the immunosupportive tumor microenvironment in glioblastoma by bevacizumab. Cancer Sci 110:499–508PubMedGoogle Scholar
  25. 25.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicenter, open-label, phase 2 randomized controlled trial. Lancet 387:1837–1846Google Scholar
  26. 26.
    Barros MH, Hassan R, Niedobitek G (2012) Tumor-associated macrophages in pediatric classical Hodgkin lymphoma: association with Epstein-Barr virus, lymphocyte subsets, and prognostic impact. Clin Cancer Res 18:3762–3771PubMedGoogle Scholar
  27. 27.
    Takada K, Kashiwagi S, Goto W, Asano Y, Takahashi K, Takashima T, Tomita S, Ohsawa M, Hirakawa K, Ohira M (2018) Use of the tumor-infiltrating CD8 to FOXP3 lymphocyte ratio in predicting treatment responses to combination therapy with pertuzumab, trastuzumab, and docetaxel for advanced HER2-positive breast cancer. J Transl Med. 16:86PubMedPubMedCentralGoogle Scholar
  28. 28.
    Cayé-Thomasen P, Werther K, Nalla A, Bøg-Hansen TC, Nielsen HJ, Stangerup SE, Thomsen J (2005) VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol Neurotol 26:98–101PubMedGoogle Scholar
  29. 29.
    Dalgorf DM, Rowsell C, Bilbao JM, Chen JM (2008) Immunohistochemical investigation of hormone receptors and vascular endothelial growth factor concentration in vestibular schwannoma. Skull Base 18:377–384PubMedPubMedCentralGoogle Scholar
  30. 30.
    Komotar RJ, Starke RM, Sisti MB, Connolly ES (2009) The role of bevacizumab in hearing preservation and tumor volume control in patients with vestibular schwannomas. Neurosurgery 65:12Google Scholar
  31. 31.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268PubMedPubMedCentralGoogle Scholar
  32. 32.
    Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H (2018) Dual role of macrophage in tumor immunity. Immunotherapy 10:899–909PubMedGoogle Scholar
  33. 33.
    Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925PubMedPubMedCentralGoogle Scholar
  34. 34.
    Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ott PA, Hodi FS, Buchbinder EI (2015) Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front Oncol 5:202PubMedPubMedCentralGoogle Scholar
  36. 36.
    Vignali DAA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wada J, Yamasaki A, Nagai S, Yanai K, Fuchino K, Kameda C, Tanaka H, Koga K, Nakashima H, Nakamura M, Tanaka M, Katano M, Morisaki T (2008) Regulatory T-cells are possible effect prediction markers of immunotherapy for cancer patients. Anticancer Res 28:2401–2408PubMedGoogle Scholar
  38. 38.
    Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73:539–549PubMedGoogle Scholar
  39. 39.
    Li Z, Liu X, Guo R, Wang P (2017) TIM-3 plays a more important role than PD-1 in the functional impairments of cytotoxic T cells of malignant Schwannomas. Tumour Biol 39:1010428317698352PubMedGoogle Scholar
  40. 40.
    Shen X, Zhao B (2018) Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ 362:k3529PubMedPubMedCentralGoogle Scholar
  41. 41.
    Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499PubMedPubMedCentralGoogle Scholar
  42. 42.
    Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1α and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790PubMedPubMedCentralGoogle Scholar
  43. 43.
    Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci USA 106:1977–1982PubMedGoogle Scholar
  44. 44.
    Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273PubMedGoogle Scholar
  45. 45.
    Fukuhara S, Sako K, Noda K, Zhang J, Minami M, Mochizuki N (2010) Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol 25:387–396PubMedGoogle Scholar
  46. 46.
    Patiar S, Harris AL (2006) Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer 13:S61–75PubMedGoogle Scholar
  47. 47.
    Neradil J, Veselska R (2015) Nestin as a marker of cancer stem cells. Cancer Sci. 106:803–811PubMedPubMedCentralGoogle Scholar
  48. 48.
    Matsuda Y, Hagio M, Ishiwata T (2013) Nestin: a novel angiogenesis marker and possible target for tumor angiogenesis. World J Gastroenterol. 19:42–48PubMedPubMedCentralGoogle Scholar
  49. 49.
    Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacker SA, Fox SB (2016) The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front Immunol. 7:621PubMedPubMedCentralGoogle Scholar
  50. 50.
    Evans DG, Baser ME, O'Reilly B, Rowe J, Gleeson M, Saeed S, King A, Huson SM, Kerr R, Thomas N, Irving R, MacFarlane R, Ferner R, McLeod R, Moffat D, Ramsden R (2005) Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br J Neurosurg. 19:5–12PubMedGoogle Scholar
  51. 51.
    McClelland S 3rd, Gerbi BJ, Cho KH, Hall WA (2007) The treatment of a large acoustic tumor with fractionated stereotactic radiotherapy. J Robot Surg. 1:227–230PubMedPubMedCentralGoogle Scholar
  52. 52.
    Plotkin SR, Wick A (2018) Neurofibromatosis and Schwannomatosis. Semin Neurol 38:73–85PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of NeurosurgeryKeio University School of MedicineTokyoJapan

Personalised recommendations