Advertisement

Journal of Neuro-Oncology

, Volume 145, Issue 2, pp 233–239 | Cite as

Cerebrospinal fluid VEGF levels and angiogenic capacity as potential prognostic markers in patients with gliomas: a pilot study

  • Sergio Vera
  • Mariana Sinning
  • Marcela Vergara
  • David Lemus
  • Carlos RosasEmail author
Laboratory Investigation

Abstract

Introduction

Gliomas are tumors of the central nervous system. Despite new classifications, they are still divided in low and high-grade gliomas, being the latter of greater malignancy. The degree of malignancy is directly related with the angiogenic activity in tumoral tissues. We measured VEGF concentrations and angiogenic capacity in cerebrospinal fluid (CSF) from patients with high and low-grade gliomas. The purpose of this study was to find a biomarker that contributes in the differential diagnosis and prognosis of gliomas.

Methods

CSF was obtained from 19 individuals: 8 with low-grade gliomas, 6 with high-grade gliomas and 5 controls. VEGF concentration in CSF was measured by ELISA and the angiogenic capacity was measured by chick chorioallantoic membrane (CAM) test.

Results

The VEGF concentration was higher in patients with high-grade gliomas, compared to patients with low-grade gliomas and controls (2860 pg/mL ± 975 vs. 182.6 ± 37.1 and 47.4 ± 0.4, respectively). On the other hand, CSF from patients with high-grade gliomas generated a higher microvascular density (MVD) than patients with low-grade gliomas and controls (13.23 ± 0.6 vessels/9000μm2 vs. 9.3 ± 0.3 and 7.92 ± 0.2, respectively). Interestingly, there was not statistical differences in both VEGF levels and angiogenic capacity in patients with low-grade gliomas and controls.

Conclusion

Together VEGF levels and angiogenic capacity in CSF can be used as a biological marker of gliomas malignancy.

Keywords

Angiogenesis Glioma VEGF Biomarker CSF 

Notes

Funding

This study was funded by”Iniciación” I08/08–2 of the “Vicerrectoría de Investigación y Desarrollo” of the Universidad de Chile and the grant “Temas Libres” 324/08 of the “Oficina de apoyo a la investigación” of the Hospital Clínico de la Universidad de Chile.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol Mech Dis 1:97–117CrossRefGoogle Scholar
  2. 2.
    Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE et al (2014) The epidemiology of glioma in adults: a state of the science review. Neuro Oncol 16:896–913CrossRefGoogle Scholar
  3. 3.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM et al (2016) Response assessment in neuro-oncology working group and european association for neuro-oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:1199–1208CrossRefGoogle Scholar
  4. 4.
    Bray F, Ferlay J, Soerjomataram I et al (2018) Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefGoogle Scholar
  5. 5.
    Ostrom QT, Gittleman H, Liao P, Vecchione-koval T, Wolinsky Y, Kruchko C et al (2017) Neuro-Oncology CBTRUS statistical report : primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19:1–88CrossRefGoogle Scholar
  6. 6.
    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2:494–503CrossRefGoogle Scholar
  7. 7.
    Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella D, Webster B et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefGoogle Scholar
  8. 8.
    Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355CrossRefGoogle Scholar
  9. 9.
    Cairncross JG, Wang M, Jenkins RB, Shaw EG, Giannini C, Brachman DG et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32:783–790CrossRefGoogle Scholar
  10. 10.
    Cancer Genome Atlas Research Network (2015) comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 372:2481–2498CrossRefGoogle Scholar
  11. 11.
    Van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group Study 26951. J Clin Oncol 31:344–350CrossRefGoogle Scholar
  12. 12.
    Hottinger AF, Hegi ME, Baumert BG (2016) Current management of low-grade gliomas. Curr Opin Neurol 29:782–788CrossRefGoogle Scholar
  13. 13.
    Kros JM, Mustafa DM, Dekker LJM, Smitt PAES, Luider TM, Zheng P (2015) Circulating glioma biomarkers. Neuro Oncol 17:343–360CrossRefGoogle Scholar
  14. 14.
    Jain RK, Di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622CrossRefGoogle Scholar
  15. 15.
    Li H, Takayama K, Wang S, Shiraishi Y, Gotanda K, Harada T et al (2014) Addition of bevacizumab enhances antitumor activity of erlotinib against non-small cell lung cancer xenografts depending on VEGF expression. Cancer Chemoth Pharm 74(6):1297–1305CrossRefGoogle Scholar
  16. 16.
    Plate K, Breier G, Weich H, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848CrossRefGoogle Scholar
  17. 17.
    Nowacka A, Smuczyński W, Rość D, Woźniak-Dąbrowska K, Śniegocki M (2018) Serum VEGF-A concentrations in patients with central nervous system (CNS) tumors. PLoS ONE 13(3):e0192395CrossRefGoogle Scholar
  18. 18.
    Karayiannakis AJ, Syrigos KN, Polychronidis A, Zbar A, Kouraklis G, Simopoulos C, Karatzas G (2002) Circulating VEGF levels in the serum of gastric cancer patients: correlation with pathological variables, patient survival, and tumor surgery. Ann Surg 236(1):37–42CrossRefGoogle Scholar
  19. 19.
    Zang J, Li C, Zhao L, Shi M, Zhou YC, Wang JH et al (2013) Prognostic value of vascular endothelial growth factor in patients with head and neck cancer: a meta-analysis. Head Neck 35(10):1507–1514PubMedGoogle Scholar
  20. 20.
    Luo H, Li J, Yang T, Wang J (2009) Expression and significance of VEGF-C and VEGF-D in differentiated thyroid carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 23(12):531–534PubMedGoogle Scholar
  21. 21.
    Srabovic N, Mujagic Z, Mujanovic-Mustedanagic J, Softic A, Muminovic Z, Rifatbegovic A et al (2013) Vascular endothelial growth factor receptor-1 expression in breast cancer and its correlation to vascular endothelial growth factor A. Int J Breast Cancer 2013:746–749CrossRefGoogle Scholar
  22. 22.
    Blank S, Deck C, Dreikhausen L, Weichert W, Giese N, Falk C et al (2015) Angiogenic and growth factors in gastric cancer. J Surg Res 194(2):420–429CrossRefGoogle Scholar
  23. 23.
    Vonmarschall Z, Cramer T, Hocker M, Burde R, Plath T, Schirner M et al (2000) De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 119(5):1358–1372CrossRefGoogle Scholar
  24. 24.
    Sinning M, Letelier R, Rosas C, Fuenzalida M, Lemus D (2012) Angiogenic potential of the cerebrospinal fluid (CSF) of patients with high-grade gliomas measured with the chick embryo chorioallantoic membrane assay (CAM). Biol Res 45:135–138CrossRefGoogle Scholar
  25. 25.
    Hochberg FH, Atai NA, Gonda D, Hughes MS, Mawejje B, Balaj L et al (2014) Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Rev Mol Diagn 14:439–452CrossRefGoogle Scholar
  26. 26.
    Kruser TJ, Mehta MP, Robins HI (2013) Pseudoprogression after glioma therapy: a comprehensive review. Expert Rev Neurother 13:389–403CrossRefGoogle Scholar
  27. 27.
    Cohen AL, Colman H (2015) Glioma Biology and Molecular Markers. In: Raizer J, Parsa A (eds) Current understanding and treatment of gliomas. Cancer treatment and research. Springer, Cham, 163 pp 15–30.Google Scholar
  28. 28.
    Szopa W, Burley TA, Kramer-Marek G, Kaspera W (2017) Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. Biomed Res Int.  https://doi.org/10.1155/2017/8013575 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen W, He D, Li Z, Zhang X, Pan D, Chen G (2015) Overexpression of vascular endothelial growth factor indicates poor outcomes of glioma: a systemaic review and meta-analysis. Int J Clin Exp Med 8(6):8709–8719PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sampath P, Weaver CE, Sungarian A, Cortez S, Alderson L, Stopa EG (2004) Cerebrospinal fluid vascular endothelial growth factor and serologic (recoverin) tumor markers for malignant glioma. Cancer Control 11:174–180CrossRefGoogle Scholar
  31. 31.
    Ribom D, Larsson A, Pietras K, Smits A (2003) Growth factor analysis of low-grade glioma CSF: PDGF and VEGF are not detectable. Neurol Sci 24:70–73PubMedGoogle Scholar
  32. 32.
    Nowacka A, Smuczynski W, Rosc D, Wozniak-Dabrowska K, Sniegocki M (2018) Serum VEGF-A concentrations in patients with central nervous system (CNS) tumors. PLoS ONE 13:e0192395CrossRefGoogle Scholar
  33. 33.
    Handzhiev D, Kiuchukov G, Enchev Y, Avramov T, Georgiev R, Varbanova S (2015) Plasma expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (BFGF) in patients with brain tumors. J IMAB 21:805–809CrossRefGoogle Scholar
  34. 34.
    Peles E, Lidar Z, Simon AJ, Grossman R, Nass D, Ram Z (2004) Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery 55:562–567CrossRefGoogle Scholar
  35. 35.
    Hands JR, Abel P, Ashton K, Dawson T, Davis C, Lea RW, McIntosh AJS, Baker MJ (2013) Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal Bioanal Chem 405:7347–7355CrossRefGoogle Scholar
  36. 36.
    Dai X, Yan J, Fu X, Pan Q, Sun D, Su Y et al (2017) Aspirin inhibits cancer metastasis and angiogenesis via targeting heparanase. Clin Cancer Res 23:6267–6278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Medicina, Universidad de ChileSantiagoChile
  2. 2.Departamento de Neurología y Psiquiatría, Clínica Alemana Santiago, Chile y Departamento Oncología, Clínica Alemana SantiagoSantiagoChile
  3. 3.Facultad de Medicina y Ciencia, Universidad San SebastiánSantiagoChile
  4. 4.Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Universidad de ChileSantiagoChile

Personalised recommendations