Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function

  • Hillary G. Caruso
  • Ryuma Tanaka
  • Jiyong Liang
  • Xiaoyang Ling
  • Aria Sabbagh
  • Verlene K. Henry
  • Tiara L. Collier
  • Amy B. HeimbergerEmail author
Laboratory Investigation



Non-viral manufacturing of CAR T cells via the Sleeping Beauty transposon is cost effective and reduces the risk of insertional mutagenesis from viral transduction. However, the current gold standard methodology requires ex vivo numerical expansion of these cells on artificial antigen-presenting cells (AaPCs) for 4 weeks to generate CAR T cells of presumed sufficient quantity and function for clinical applications.


We engineered EGFRvIII-specific CAR T cells and monitored phenotypic changes throughout their ex vivo manufacturing. To reduce the culture time required to generate the CAR T-cell population, we selected for T cells in peripheral blood mononuclear cells prior to CAR modification (to eliminate the competing NK cell population).


While we found increased expression of exhaustion markers (such as PD-1, PD-L1, TIM-3, and LAG-3) after 2 weeks in culture, whose levels continued to rise over time, we were able to generate a CAR+ T-cell population with comparable CAR expression and cell numbers in 2 weeks, thereby reducing manufacturing time by 50%, with lower expression of immune exhaustion markers. The CAR T cells manufactured at 2 weeks showed superior therapeutic efficacy in mice bearing established orthotopic EGFRvIII+ U87 gliomas.


These findings demonstrate a novel, rapid method to generate CAR T cells by non-viral modification that results in CAR T cells superior in phenotype and function and further emphasizes that careful monitoring of CAR T-cell phenotype prior to infusion is critical for generating an optimal CAR T-cell product with full antitumor potential.


Chimeric antigen receptor T cell Exhaustion markers PD-1 PD-L1 LAG-3 TIM-3 



We thank David M. Wildrick, Ph.D., for editorial assistance and Audria Patrick for assistance in preparing the manuscript.

Authors’ contributions

HC, RT, XL, AS, and ABH conceived and designed the experiments, HC, RT, and XL developed the methodology, HC, RT, JL, XL, AS, VKT, and TLC carried out the experiment and data acquisition, HC, JL, and ABH wrote, reviewed, and revised the manuscript, ABH provide the administrative, technical, and material support, and all authors read and approved the final manuscript.


This study was funded by the Brooks Foundation for Cancer Research.

Compliance with ethical standards

Conflict of interest

H.C. has licensed intellectual property to Ziopharm and Precigen Therapeutics on CAR therapeutics. The other authors have no competing interests related to the subject of this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. In vivo experiments involving mice were approved by Institutional Animal Care and Use Committee of The University of Texas MD Anderson Cancer Center.

Supplementary material

11060_2019_3311_MOESM1_ESM.docx (14 kb)
Supplementary file1 (DOCX 13 kb)


  1. 1.
    Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S et al (2016) Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest 126(9):3363–3376CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al (2015) Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21:4062–4072CrossRefPubMedCentralGoogle Scholar
  5. 5.
    O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9(399):eaaa0984CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11(4):1462–1466CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Singh H, Huls H, Kebriaei P, Cooper LJ (2014) A new approach to gene therapy using sleeping beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 257(1):181–190CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S et al (2015) Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 75(17):3505–3518CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H et al (2008) Redirecting specificity of T-cell populations for CD19 using the sleeping beauty system. Cancer Res 68(8):2961–2971CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF (2000) An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 92(2):326–333CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Davies JK, Singh H, Huls H, Yuk D, Lee DA, Kebriaei P et al (2010) Combining CD19 redirection and alloanergization to generate tumor-specific human T cells for allogeneic cell therapy of B-cell malignancies. Cancer Res 70(10):3915–3924CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al (2019) A safe and potent anti-CD19 CAR T cell therapy. Nat MedGoogle Scholar
  13. 13.
    Chen J, Lopez-Moyado IF, Seo H, Lio CJ, Hempleman LJ, Sekiya T et al (2019) NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567(7749):530–534CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S et al (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24(5):563–571CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R, Yu Z et al (2009) Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA 106(41):17469–17474CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ramakrishna S, Highfill SL, Walsh Z, Nguyen SM, Lei H, Shern JF, et al (2019) Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res. CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB et al (2016) The epigenetic landscape of T cell exhaustion. Science 354(6316):1165–1169CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Yin Y, Boesteanu AC, Binder ZA, Xu C, Reid RA, Rodriguez JL et al (2018) Checkpoint blockade reverses anergy in IL-13Ralpha2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol Ther Oncolytics 11:20–38CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP et al (2019) Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T Cells targeting EGFRvIII in patients with glioblastoma. J Immunother 42(4):126–135CrossRefPubMedCentralGoogle Scholar
  20. 20.
    van den Bent MJ, Gao Y, Kerkhof M, Kros JM, Gorlia T, van Zwieten K et al (2015) Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol 17(7):935–941CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA et al (2016) Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Investig 126(8):3036–3052CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hillary G. Caruso
    • 2
  • Ryuma Tanaka
    • 1
  • Jiyong Liang
    • 2
  • Xiaoyang Ling
    • 2
  • Aria Sabbagh
    • 2
  • Verlene K. Henry
    • 2
  • Tiara L. Collier
    • 2
  • Amy B. Heimberger
    • 2
    Email author
  1. 1.Division of PediatricsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations