Advertisement

TRIM44 is indispensable for glioma cell proliferation and cell cycle progression through AKT/p21/p27 signaling pathway

  • Xia Zhou
  • Yadong Yang
  • Pengcheng Ma
  • Na Wang
  • Dong Yang
  • Qiu Tu
  • Bin Sun
  • Tingxiu Xiang
  • Xudong Zhao
  • Zongliu HouEmail author
  • Xiangdong FangEmail author
Laboratory Investigation
  • 34 Downloads

Abstract

Purpose

Glioma is one of the lethal cancers which needs effective therapeutic target. TRIM44 has been found playing a carcinogenic role in human tumors such as breast cancer and ovarian cancer. However, the pathophysiological significance of TRIM44 in glioma is still unclear.

Methods

Quantitative-PCR and western blot were used to assess the expression of TRIM44 in glioma cells. For cell proliferation, Brdu incorporation and colony formation assays were performed. By Caspase 3 staining and FACS analysis, we revealed that TRIM44 knockdown induced glioma cell apoptosis. A BALB/c nude mouse xenograft model and following immunohistochemical (IHC) staining enables us to explore the effect of TRIM44 deletion on glioma growth in vivo. Western blot of p21, p27 and AKT indicated the possible role of TRIM44 in regulation AKT pathway in glioma.

Results

TRIM44 was significantly elevated in glioma cells, and high expression of TRIM44 is related to poor prognostic of glioma patients. TRIM44 knockdown by shRNAs inhibit glioma cell proliferation, migration, induced cell cycle disruption and further cellular apoptosis in vitro. As well, TRIM44 inactivation obviously inhibit tumor growth in xenograft model. Furthermore, the negative cell cycle regulators p21/p27 are significantly upregulated, while AKT which is known as the main regulator of p21/p27 is inactivated in TRIM44-dificient cells. These results suggested that TRIM44 inactivation disrupted cell cycle progression and inhibit cell proliferation through AKT/p21/p27 pathway in glioma.

Conclusion

TRIM44 was associated with oncogenic potential of glioma. Targeting TRIM44 might be beneficial for glioma therapy.

Keywords

TRIM44 Cell cycle Migration Proliferation AKT 

Notes

Acknowledgements

We thank Ahmed M. Hegazy for manuscript modification. This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 81472862), the Top Talents Program of Yunnan Province China (Grant No. 2012HA014) to Xudong Zhao, Applied Basic Research Projects of Yunnan (Grant No. 2013FA020), the National Key Research and Development Program of China (Grant Nos. 2016YFC0901701, 2017YFC0908402, 2018YFC0910702, 2018YFC0910402), the China Postdoctoral Science Foundation (Project No: 2019M653500, awarded to Xia Zhou).

Author contributions

XZ and YY performed most experiments of the work. PM helped in the experiment. NW helped with the lentivirus preparation and in vitro experiments. DY, QT, and BS helped with the paraffin section and immunochemical staining. XZ, TX, ZH and XF designed the experiments and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11060_2019_3301_MOESM1_ESM.pdf (294 kb)
Supplementary file1 (PDF 293 kb)
11060_2019_3301_MOESM2_ESM.xlsx (10 kb)
Supplementary file2 (XLSX 10 kb)
11060_2019_3301_MOESM3_ESM.xlsx (16 kb)
Supplementary file3 (XLSX 15 kb)

References

  1. 1.
    Loeper S, Romeike BFM, Heckmann N, Jung V, Henn W, Feiden W et al (2001) Frequent mitotic errors in tumor cells of genetically micro-heterogeneous glioblastomas. Cytogenet Cell Genet 94(1–2):1–8CrossRefGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefGoogle Scholar
  3. 3.
    Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13(12):1339–1348CrossRefGoogle Scholar
  4. 4.
    Jovcevska I, Kocevar N, Komel R (2013) Glioma and glioblastoma—how much do we (not) know? Mol Clin Oncol 1(6):935–941CrossRefGoogle Scholar
  5. 5.
    Wei J, Gabrusiewicz K, Heimberger A (2013) The controversial role of microglia in malignant gliomas. Clin Dev Immunol.  https://doi.org/10.1155/2013/285246 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kesari S, Schiff D, Henson JW, Muzikansky A, Gigas DC, Doherty L et al (2008) Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol 10(3):300–308CrossRefGoogle Scholar
  7. 7.
    Werner MH, Phuphanich S, Lyman GH (1995) The increasing incidence of malignant gliomas and primary central-nervous-system lymphoma in the elderly. Cancer 76(9):1634–1642CrossRefGoogle Scholar
  8. 8.
    Baumann F, Bjeljac M, Kollias SS, Baumert BG, Brandner S, Rousson V et al (2004) Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neurooncol 67(1–2):191–200CrossRefGoogle Scholar
  9. 9.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefGoogle Scholar
  10. 10.
    Boutou E, Matsas R, Mamalaki A (2001) Isolation of a mouse brain cDNA expressed in developing neuroblasts and mature neurons. Brain Res Mol Brain Res 86(1–2):153–167CrossRefGoogle Scholar
  11. 11.
    Carthagena L, Bergamaschi A, Luna JM, David A, Uchil PD, Margottin-Goguet F et al (2009) Human TRIM gene expression in response to interferons. PLoS ONE 4(3):e4894CrossRefGoogle Scholar
  12. 12.
    Ozato K, Shin DM, Chang TH, Morse HC (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8(11):849–860CrossRefGoogle Scholar
  13. 13.
    Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. BioEssays 27(11):1147–1157CrossRefGoogle Scholar
  14. 14.
    Yang B, Wang J, Wang Y, Zhou H, Wu X, Tian Z et al (2013) Novel function of Trim44 promotes an antiviral response by stabilizing VISA. J Immunol 190(7):3613–3619CrossRefGoogle Scholar
  15. 15.
    Zhu X, Wu Y, Miao X, Li C, Yin H, Yang S et al (2016) High expression of TRIM44 is associated with enhanced cell proliferation, migration, invasion, and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol 37(11):14615–14628CrossRefGoogle Scholar
  16. 16.
    Kashimoto K, Komatsu S, Ichikawa D, Arita T, Konishi H, Nagata H et al (2012) Overexpression of TRIM44 contributes to malignant outcome in gastric carcinoma. Cancer Sci 103(11):2021–2026CrossRefGoogle Scholar
  17. 17.
    Peters CJ, Rees JRE, Hardwick RH, Hardwick JS, Vowler SL, Ong CAJ et al (2010) A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology 139(6):1995–U280CrossRefGoogle Scholar
  18. 18.
    Xing Y, Meng Q, Chen X, Zhao Y, Liu W, Hu J et al (2016) TRIM44 promotes proliferation and metastasis in nonsmall cell lung cancer via mTOR signaling pathway. Oncotarget 7(21):30479–91CrossRefGoogle Scholar
  19. 19.
    Luo Q, Lin H, Ye X, Huang J, Lu S, Xu L (2015) Trim44 facilitates the migration and invasion of human lung cancer cells via the NF-kappaB signaling pathway. Int J Clin Oncol 20(3):508–17CrossRefGoogle Scholar
  20. 20.
    Kawabata H, Azuma K, Ikeda K, Sugitani I, Kinowaki K, Fujii T et al (2017) TRIM44 is a poor prognostic factor for breast cancer patients as a modulator of NF-kappaB signaling. Int J Mol Sci.  https://doi.org/10.3390/ijms18091931 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ong CA, Shannon NB, Ross-Innes CS, O'Donovan M, Rueda OM, Hu DE et al (2014) Amplification of TRIM44: pairing a prognostic target with potential therapeutic strategy. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/dju050 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li L, Shao MY, Zou SC, Xiao ZF, Chen ZC (2019) MiR-101-3p inhibits EMT to attenuate proliferation and metastasis in glioblastoma by targeting TRIM44. J Neurooncol 141(1):19–30CrossRefGoogle Scholar
  23. 23.
    Wang X, Gao P, Long M, Lin F, Wei JX, Ren JH et al (2011) Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol 28(4):1225–54CrossRefGoogle Scholar
  24. 24.
    Fillies T, Woltering M, Brandt B, Van Diest JP, Werkmeister R, Joos U et al (2007) Cell cycle regulating proteins p21 and p27 in prognosis of oral squamous cell carcinomas. Oncol Rep 17(2):355–9PubMedGoogle Scholar
  25. 25.
    Somasundaram K, Zhang HB, Zeng YX, Houvras Y, Peng Y, Zhang HX et al (1997) Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21(WAF1/CiP1). Nature 389(6647):187–90CrossRefGoogle Scholar
  26. 26.
    Polyak K, Lee MH, Erdjumentbromage H, Koff A, Roberts JM, Tempst P et al (1994) Cloning of P27(Kip1), a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66CrossRefGoogle Scholar
  27. 27.
    Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–40CrossRefGoogle Scholar
  28. 28.
    Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006) Comparison of lentiviral vector titration methods. BMC Biotechnol 6:34CrossRefGoogle Scholar
  29. 29.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–8PubMedGoogle Scholar
  30. 30.
    Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–80CrossRefGoogle Scholar
  31. 31.
    Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31(4):229–34CrossRefGoogle Scholar
  32. 32.
    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol 148(1):3–15CrossRefGoogle Scholar
  33. 33.
    Tiwary S, Xu L (2016) FRIZZLED7 is required for tumor inititation and metastatic growth of melanoma cells. PLoS ONE 11(1):e0147638CrossRefGoogle Scholar
  34. 34.
    Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66CrossRefGoogle Scholar
  35. 35.
    Lu S, Ren CX, Liu Y, Epner DE (2006) PI3K-Akt signaling is involved in the regulation of p21(WAF/CIP) expression and androgen-independent growth in prostate cancer cells. Int J Oncol 28(1):245–51PubMedGoogle Scholar
  36. 36.
    Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277(13):11352–61CrossRefGoogle Scholar
  37. 37.
    Prasad SB, Yadav SS, Das M, Modi A, Kumari S, Pandey LK et al (2015) PI3K/AKT pathway-mediated regulation of p27(Kip1) is associated with cell cycle arrest and apoptosis in cervical cancer. Cell Oncol (Dordrecht) 38(3):215–25CrossRefGoogle Scholar
  38. 38.
    Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM (2015) Cancer invasion: patterns and mechanisms. Acta Nat 7(2):17–28CrossRefGoogle Scholar
  39. 39.
    Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M et al (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102(30):10528–33CrossRefGoogle Scholar
  40. 40.
    Liu Y, Zhang X, Wang J, Yang J, Tan WF (2015) JNK is required for maintaining the tumor-initiating cell-like properties of acquired chemoresistant human cancer cells. Acta Pharmacol Sin 36(9):1099–106CrossRefGoogle Scholar
  41. 41.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–9CrossRefGoogle Scholar
  42. 42.
    Rajendran V, Jain MV (2018) In vitro tumorigenic assay: colony forming assay for cancer stem cells. Methods Mol Biol 1692:89–95CrossRefGoogle Scholar
  43. 43.
    Wang L, Chen QX, Chen ZB, Tian DF, Xu HT, Cai Q et al (2015) EFEMP2 is upregulated in gliomas and promotes glioma cell proliferation and invasion. Int J Clin Exp Pathol 8(9):10385–93PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–19CrossRefGoogle Scholar
  45. 45.
    Kunter I, Erdal E, Nart D, Yilmaz F, Karademir S, Sagol O et al (2014) Active form of AKT controls cell proliferation and response to apoptosis in hepatocellular carcinoma. Oncol Rep 31(2):573–80CrossRefGoogle Scholar
  46. 46.
    Yu JSL, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143(17):3050–60CrossRefGoogle Scholar
  47. 47.
    Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–51CrossRefGoogle Scholar
  48. 48.
    Wan X, Helman LJ (2003) Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 22(50):8205–11CrossRefGoogle Scholar
  49. 49.
    Xiong D, Jin C, Ye X, Qiu B, Jianjun X, Zhu S et al (2018) TRIM44 promotes human esophageal cancer progression via the AKT/mTOR pathway. Cancer Sci 109(10):3080–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central Laboratory of Yan’an HospitalAffiliated to Kunming Medical UniversityKunmingChina
  2. 2.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  5. 5.Oncology and Hematology DepartmentMianyang Hospital of T.C.M.MianyangChina
  6. 6.Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  7. 7.Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  8. 8.Kunming Primate Research CenterChinese Academy of SciencesKunmingChina
  9. 9.KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina

Personalised recommendations