Journal of Neuro-Oncology

, Volume 145, Issue 2, pp 329–337 | Cite as

Increased cochlear radiation dose predicts delayed hearing loss following both stereotactic radiosurgery and fractionated stereotactic radiotherapy for vestibular schwannoma

  • Kunal S. Patel
  • Edwin Ng
  • Taranjit Kaur
  • Tyler Miao
  • Tania Kaprealian
  • Percy Lee
  • Nader Pouratian
  • Michael T. Selch
  • Antonio A. F. De Salles
  • Quinton Gopen
  • Stephen Tenn
  • Isaac YangEmail author
Clinical Study



Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (fSRT) are noninvasive therapies for vestibular schwannomas providing excellent tumor control. However, delayed hearing loss after radiation therapy remains an issue. One potential target to for improving hearing rates is limiting radiation exposure to the cochlea.


We retrospectively reviewed 100 patients undergoing either SRS with 12 Gy (n = 43) or fSRT with 50 Gy over 28 fractions (n = 57) for vestibular schwannoma. Univariate and multivariate analysis were carried out to identify predictors of hearing loss as measured by the Gardner Robertson scale after radiation therapy.


Deterioration of hearing occurred in 30% of patients with SRS and 26% with fSRT. The overall long term (> 2 year) progression rates were 20% for SRS and 16% for fSRT. Patients with a decrease in their Gardner Robertson hearing score and those that loss serviceable hearing had significantly higher average minimal doses to the cochlea in both SRS and fSRT cohorts. ROC analysis showed that a cut off of 5 Gy and 35 Gy, for SRS and fSRT respectively, predicted hearing loss with high sensitivity/specificity.


Our data suggests the minimal dose of radiation that the cochlear volume is exposed to is a predictor of delayed hearing loss after either SRS or fSRT. A threshold of 5 Gy/35 Gy may lead to improved hearing preservation after radiotherapy. Further prospective multi center studies can further elucidate this mechanism.


Vestibular schwannoma Stereotactic radiosurgery Fractionated radiotherapy Serviceable hearing Cochlea 



Isaac Yang was partially supported by a Visionary Fund Grant, an Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research UCLA Scholars in Translational Medicine Program Award, the Jason Dessel Memorial Seed Grant, the UCLA Honberger Endowment Brain Tumor Research Seed Grant, and the STOP CANCER Research Career Development Award. The remaining authors have no disclosures or conflicts-of-interest.

Compliance with ethical standards

Conflict of interest

All authors that they have no conflict of interest.


  1. 1.
    Pinna MH, Bento RF, Neto RV (2012) Vestibular schwannoma: 825 cases from a 25-year experience. Int Arch Otorhinolaryngol 16:466–475. CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Arthurs BJ, Lamoreaux WT, Mackay AR et al (2011) Gamma knife radiosurgery for vestibular schwannomas: tumor control and functional preservation in 70 patients. Am J Clin Oncol 34:265–269. CrossRefPubMedGoogle Scholar
  3. 3.
    Persson O, Bartek J, Shalom NB et al (2017) Stereotactic radiosurgery vs. fractionated radiotherapy for tumor control in vestibular schwannoma patients: a systematic review. Acta Neurochir 159:1013–1021. CrossRefGoogle Scholar
  4. 4.
    Rykaczewski B, Zabek M (2014) A meta-analysis of treatment of vestibular schwannoma using Gamma Knife radiosurgery. Contemp Oncol 18:60–66. CrossRefGoogle Scholar
  5. 5.
    Mulder JJS, Kaanders JH, van Overbeeke JJ, Cremers CWRJ (2012) Radiation therapy for vestibular schwannomas. Curr Opin Otolaryngol Head Neck Surg 20:367–371. CrossRefGoogle Scholar
  6. 6.
    Delbrouck C, Hassid S, Massager N et al (2003) Preservation of hearing in vestibular schwannomas treated by radiosurgery using leksell gamma knife: preliminary report of a prospective Belgian clinical study. Acta Otorhinolaryngol Belg 57:197–204Google Scholar
  7. 7.
    Paek SH, Chung H-T, Jeong SS et al (2005) Hearing preservation after gamma knife stereotactic radiosurgery of vestibular schwannoma. Cancer 104:580–590. CrossRefGoogle Scholar
  8. 8.
    Massager N, Nissim O, Delbrouck C et al (2006) Role of intracanalicular volumetric and dosimetric parameters on hearing preservation after vestibular schwannoma radiosurgery. Int J Radiat Oncol Biol Phys 64:1331–1340. CrossRefGoogle Scholar
  9. 9.
    Linskey ME, Johnstone PAS (2003) Radiation tolerance of normal temporal bone structures: implications for gamma knife stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 57:196–200CrossRefGoogle Scholar
  10. 10.
    Massager N, Nissim O, Delbrouck C et al (2013) Irradiation of cochlear structures during vestibular schwannoma radiosurgery and associated hearing outcome. J Neurosurg 119(Suppl):733–739Google Scholar
  11. 11.
    Thomas C, Di Maio S, Ma R et al (2007) Hearing preservation following fractionated stereotactic radiotherapy for vestibular schwannomas: prognostic implications of cochlear dose. J Neurosurg 107:917–926. CrossRefPubMedGoogle Scholar
  12. 12.
    Rasmussen R, Claesson M, Stangerup S-E et al (2012) Fractionated stereotactic radiotherapy of vestibular schwannomas accelerates hearing loss. Int J Radiat Oncol Biol Phys 83:e607–611. CrossRefPubMedGoogle Scholar
  13. 13.
    Baschnagel AM, Chen PY, Bojrab D et al (2013) Hearing preservation in patients with vestibular schwannoma treated with Gamma Knife surgery. J Neurosurg 118:571–578. CrossRefPubMedGoogle Scholar
  14. 14.
    Jacob JT, Carlson ML, Schiefer TK et al (2014) Significance of cochlear dose in the radiosurgical treatment of vestibular schwannoma: controversies and unanswered questions. Neurosurgery 74:466–474. (discussion 474)CrossRefPubMedGoogle Scholar
  15. 15.
    Kano H, Kondziolka D, Khan A et al (2013) Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma: clinical article. J Neurosurg 119:863–873Google Scholar
  16. 16.
    Brown M, Ruckenstein M, Bigelow D et al (2011) Predictors of hearing loss after gamma knife radiosurgery for vestibular schwannomas: age, cochlear dose, and tumor coverage. Neurosurgery 69:605–613. (discussion 613–614)CrossRefPubMedGoogle Scholar
  17. 17.
    Watanabe S, Yamamoto M, Kawabe T et al (2016) Stereotactic radiosurgery for vestibular schwannomas: average 10-year follow-up results focusing on long-term hearing preservation. J Neurosurg 125:64–72. CrossRefPubMedGoogle Scholar
  18. 18.
    Pan CC, Eisbruch A, Lee JS et al (2005) Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 61:1393–1402. CrossRefPubMedGoogle Scholar
  19. 19.
    Chung LK, Ung N, Sheppard JP et al (2018) Impact of cochlear dose on hearing preservation following stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma. J Neurol Surg B 79:335–342. CrossRefGoogle Scholar
  20. 20.
    Pacholke HD, Amdur RJ, Schmalfuss IM et al (2005) Contouring the middle and inner ear on radiotherapy planning scans. Am J Clin Oncol 28:143–147CrossRefGoogle Scholar
  21. 21.
    Ikonomidis C, Pica A, Bloch J, Maire R (2015) Vestibular schwannoma: the evolution of hearing and tumor size in natural course and after treatment by LINAC stereotactic radiosurgery. Audiol Neurootol 20:406–415. CrossRefGoogle Scholar
  22. 22.
    Akpinar B, Mousavi SH, McDowell MM et al (2016) Early radiosurgery improves hearing preservation in vestibular schwannoma patients with normal hearing at the time of diagnosis. Int J Radiat Oncol Biol Phys 95:729–734. CrossRefGoogle Scholar
  23. 23.
    Aoyama H, Onodera S, Takeichi N et al (2013) Symptomatic outcomes in relation to tumor expansion after fractionated stereotactic radiation therapy for vestibular schwannomas: single-institutional long-term experience. Int J Radiat Oncol Biol Phys 85:329–334. CrossRefGoogle Scholar
  24. 24.
    Okunaga T, Matsuo T, Hayashi N et al (2005) Linear accelerator radiosurgery for vestibular schwannoma: measuring tumor volume changes on serial three-dimensional spoiled gradient-echo magnetic resonance images. J Neurosurg 103:53–58. CrossRefGoogle Scholar
  25. 25.
    Hanna GG, Murray L, Patel R et al (2018) UK consensus on normal tissue dose constraints for stereotactic radiotherapy. Clin Oncol 30:5–14. CrossRefGoogle Scholar
  26. 26.
    Lambrecht M, Eekers DBP, Alapetite C et al (2018) Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus. Radiother Oncol 128:26–36. CrossRefGoogle Scholar
  27. 27.
    Lee T-F, Yeh S-A, Chao P-J et al (2015) Normal tissue complication probability modeling for cochlea constraints to avoid causing tinnitus after head-and-neck intensity-modulated radiation therapy. Radiat Oncol 10:194. CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kunal S. Patel
    • 1
  • Edwin Ng
    • 1
  • Taranjit Kaur
    • 2
  • Tyler Miao
    • 2
  • Tania Kaprealian
    • 3
  • Percy Lee
    • 3
  • Nader Pouratian
    • 1
    • 3
  • Michael T. Selch
    • 3
  • Antonio A. F. De Salles
    • 1
    • 3
  • Quinton Gopen
    • 2
  • Stephen Tenn
    • 3
  • Isaac Yang
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of NeurosurgeryUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Head and Neck SurgeryUniversity of California Los AngelesLos AngelesUSA
  3. 3.Department of Radiation OncologyUniversity of California Los AngelesLos AngelesUSA
  4. 4.Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, UCLA Jonsson Comprehensive Cancer CenterLos AngelesUSA

Personalised recommendations