Advertisement

Journal of Neuro-Oncology

, Volume 145, Issue 2, pp 309–319 | Cite as

Oligodendroglioma confers higher risk of radiation necrosis

  • Haroon Ahmad
  • David Martin
  • Sohil H. Patel
  • Joseph Donahue
  • Beatriz Lopes
  • Benjamin Purow
  • David Schiff
  • Camilo E. FadulEmail author
Clinical Study

Abstract

Background

Radiation therapy (RT) remains a mainstay for the treatment of lower grade gliomas. Radiation neurotoxicity is a serious complication, carrying high morbidity in the absence of tumor progression. The incidence remains poorly categorized and known risk factors identified are related to the radiation modality. We hypothesized that patients with oligodendroglioma have a higher risk of radiation necrosis (RN) as compared to patients with astrocytoma.

Methods

We conducted a retrospective review of adults with lower grade diffuse gliomas over a 10-year span. The primary outcome was RN, either pathologically confirmed or clinically diagnosed. Cases without pathological confirmation must have been symptomatic, requiring administration of bevacizumab or high-dose steroids. Cox proportional hazard ratios were used for multivariate analyses.

Results

In 319 patients, we identified RN in 41 patients (12.9%): 28 patients (21.3%) with oligodendroglioma and 13 (6.9%) with astrocytoma (HR 3.42, p < 0.001). Patients with oligodendroglioma who received > 54 Gy had a higher incidence (31.2%) than those receiving ≤ 54 Gy (14.3%, HR 6.9, p = 0.002). There was no similar correlation among patients with astrocytoma. There was no difference in incidence based on use of concomitant temozolomide. Radiation necrosis appeared within 24 months from radiation in 80.5% of patients.

Conclusion

Our study suggests that patients with oligodendroglioma are at higher risk of developing RN. The incidence increases with increasing radiation dose in patients with oligodendroglioma but not with astrocytoma. RN usually appears within 24 months from RT. Patients with oligodendroglioma receiving > 54 Gy are at highest risk.

Keywords

Radiation necrosis Neurotoxicity Oligodendroglioma Astrocytoma 

Notes

Author contribution

Primary author, data collection, Analysis: H Ahmad, MD. Statistical analysis and figures: D Martin, MSc. Radiographic analysis and review: SH Patel, MD. Radiographic analysis and review: J Donahue, MD. Pathologic analysis and review: B Lopes, MD. Review and editing: B Purow, MD. Review and editing: D Schiff, MD. Senior author, analysis, review: CE Fadul, MD.

Funding

SHP was funded by a Radiological Society of North America Research Scholar Grant (RSCH1819). The other authors have no funding to report.

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.

Supplementary material

11060_2019_3297_MOESM1_ESM.pdf (281 kb)
Supplementary data (pdf)

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Schiff D (2016) Molecular profiling optimizes the treatment of low-grade glioma. Neuro-oncology 18:1593–1594.  https://doi.org/10.1093/neuonc/now262 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    van den Bent MJ, Afra D, de Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, Malmstrom PO, Collette L, Pierart M, Mirimanoff R, Karim AB, Radiotherapy E, the UKMRC (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366:985–990.  https://doi.org/10.1016/S0140-6736(05)67070-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Le Rhun E, Balana C, Chinot O, Bendszus M, Reijneveld JC, Dhermain F, French P, Marosi C, Watts C, Oberg I, Pilkington G, Baumert BG, Taphoorn MJB, Hegi M, Westphal M, Reifenberger G, Soffietti R, Wick W, European Association for Neuro-Oncology Task Force on G (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329.  https://doi.org/10.1016/S1470-2045(17)30194-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Shaw E, Arusell R, Scheithauer B, O'Fallon J, O'Neill B, Dinapoli R, Nelson D, Earle J, Jones C, Cascino T, Nichols D, Ivnik R, Hellman R, Curran W, Abrams R (2002) Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 20:2267–2276.  https://doi.org/10.1200/JCO.2002.09.126 CrossRefPubMedGoogle Scholar
  6. 6.
    Karim AB, Maat B, Hatlevoll R, Menten J, Rutten EH, Thomas DG, Mascarenhas F, Horiot JC, Parvinen LM, van Reijn M, Jager JJ, Fabrini MG, van Alphen AM, Hamers HP, Gaspar L, Noordman E, Pierart M, van Glabbeke M (1996) A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 36:549–556CrossRefPubMedGoogle Scholar
  7. 7.
    Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228CrossRefPubMedGoogle Scholar
  8. 8.
    Edwards M WC (1980) Treatment of radiation necrosis. In: Kagan A, editor Radiation damage to the nervous system A delayed therapeutic hazard New York: Raven Press: 129–153Google Scholar
  9. 9.
    Winter SF, Loebel F, Loeffler J, Batchelor TT, Martinez-Lage M, Vajkoczy P, Dietrich J (2019) Treatment-Induced Brain Tissue Necrosis: A Clinical Challenge in Neuro-Oncology. Neuro Oncol.  https://doi.org/10.1093/neuonc/noz048 CrossRefPubMedGoogle Scholar
  10. 10.
    Fischer AWHH (1930) Lokales Amyloid im Gehirn. Disch Z Chir 227:475–483CrossRefGoogle Scholar
  11. 11.
    Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508.  https://doi.org/10.1016/j.ijrobp.2005.12.002 CrossRefPubMedGoogle Scholar
  12. 12.
    MA. M (1980) Dosimetric considerations in the diagnosis of radiation necrosis of the brain. In: Kagan A, editor Radiation damage to the nervous system A delayed therapeutic hazard New York: Raven Press: 59–91Google Scholar
  13. 13.
    Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384.  https://doi.org/10.1148/radiology.217.2.r00nv36377 CrossRefPubMedGoogle Scholar
  14. 14.
    Greene-Schloesser D, Robbins ME (2012) Radiation-induced cognitive impairment–from bench to bedside. Neuro Oncol 14(Suppl 4):37–44.  https://doi.org/10.1093/neuonc/nos196 CrossRefGoogle Scholar
  15. 15.
    Cheung MC, Chan AS, Law SC, Chan JH, Tse VK (2003) Impact of radionecrosis on cognitive dysfunction in patients after radiotherapy for nasopharyngeal carcinoma. Cancer 97:2019–2026.  https://doi.org/10.1002/cncr.11295 CrossRefPubMedGoogle Scholar
  16. 16.
    Genc M, Genc E, Genc BO, Kiresi DA (2006) Significant response of radiation induced CNS toxicity to high dose steroid administration. Br J Radiol 79:e196–199.  https://doi.org/10.1259/bjr/50789043 CrossRefPubMedGoogle Scholar
  17. 17.
    Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326.  https://doi.org/10.1016/j.ijrobp.2006.10.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Vallurupalli M, Lauderdale K, Balboni MJ, Phelps AC, Block SD, Ng AK, Kachnic LA, Vanderweele TJ, Balboni TA (2012) The role of spirituality and religious coping in the quality of life of patients with advanced cancer receiving palliative radiation therapy. J Support Oncol 10:81–87.  https://doi.org/10.1016/j.suponc.2011.09.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83.  https://doi.org/10.1007/s11060-006-9241-y CrossRefPubMedGoogle Scholar
  20. 20.
    van West SE, de Bruin HG, van de Langerijt B, Swaak-Kragten AT, van den Bent MJ, Taal W (2017) Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol 19:719–725.  https://doi.org/10.1093/neuonc/now194 CrossRefPubMedGoogle Scholar
  21. 21.
    Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252CrossRefPubMedGoogle Scholar
  22. 22.
    Acharya S, Robinson CG, Michalski JM, Mullen D, DeWees TA, Campian JL, Chundury A, Bottani B, Hallahan DE, Bradley JD, Huang J (2018) Association of 1p/19q Codeletion and Radiation Necrosis in Adult Cranial Gliomas After Proton or Photon Therapy. Int J Radiat Oncol Biol Phys 101:334–343.  https://doi.org/10.1016/j.ijrobp.2018.01.099 CrossRefPubMedGoogle Scholar
  23. 23.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):1–63.  https://doi.org/10.1093/neuonc/nou223 CrossRefGoogle Scholar
  24. 24.
    Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, Okawa H, Furukawa Y, Hirai T, Endo M (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88.  https://doi.org/10.1007/s11060-009-0106-z CrossRefPubMedGoogle Scholar
  25. 25.
    Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, Comstock B, Jarvik JG (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27:1404–1411PubMedGoogle Scholar
  26. 26.
    Chernov MF, Hayashi M, Izawa M, Usukura M, Yoshida S, Ono Y, Muragaki Y, Kubo O, Hori T, Takakura K (2006) Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol 23:19–27.  https://doi.org/10.1007/s10014-006-0194-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Bampoe J, Nag S, Leung P, Laperriere N, Bernstein M (2000) Brain necrosis after permanent low-activity iodine-125 implants: case report and review of toxicity from focal radiation. Brain Tumor Pathol 17:139–145CrossRefPubMedGoogle Scholar
  28. 28.
    Hoshi M, Hayashi T, Kagami H, Murase I, Nakatsukasa M (2003) Late bilateral temporal lobe necrosis after conventional radiotherapy. Neurol Med Chir (Tokyo) 43:213–216CrossRefGoogle Scholar
  29. 29.
    Coghlan KM, Magennis P (1999) Cerebral radionecrosis following the treatment of parotid tumours: a case report and review of the literature. Int J Oral Maxillofac Surg 28:50–52CrossRefPubMedGoogle Scholar
  30. 30.
    Glass JP, Hwang TL, Leavens ME, Libshitz HI (1984) Cerebral radiation necrosis following treatment of extracranial malignancies. Cancer 54:1966–1972CrossRefPubMedGoogle Scholar
  31. 31.
    Lee AW, Foo W, Chappell R, Fowler JF, Sze WM, Poon YF, Law SC (1998) Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 40:35–42CrossRefPubMedGoogle Scholar
  32. 32.
    Morris JG, Grattan-Smith P, Panegyres PK, O'Neill P, Soo YS, Langlands AO (1994) Delayed cerebral radiation necrosis. Q J Med 87:119–129PubMedGoogle Scholar
  33. 33.
    Kramer S (1968) The hazards of therapeutic iradiation of the central nervous system. Clin Neurosurg 15:301–318CrossRefPubMedGoogle Scholar
  34. 34.
    Bronk JK, Guha-Thakurta N, Allen PK, Mahajan A, Grosshans DR, McGovern SL (2018) Analysis of pseudoprogression after proton or photon therapy of 99 patients with low grade and anaplastic glioma. Clin Transl Radiat Oncol 9:30–34.  https://doi.org/10.1016/j.ctro.2018.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13:52–64.  https://doi.org/10.1038/nrneurol.2016.185 CrossRefPubMedGoogle Scholar
  36. 36.
    Burger PC, Mahley MS Jr, Dudka L, Vogel FS (1979) The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44:1256–1272CrossRefPubMedGoogle Scholar
  37. 37.
    Rubinstein JL, Herman MM, Long TF, Wilbur JR (1975) Leukoencephalopathy following combined therapy of central nervous system leukemia and lymphoma. Acta Neuropathol Suppl 6:251–255PubMedGoogle Scholar
  38. 38.
    Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G (2005) Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 113:379–385.  https://doi.org/10.1002/ijc.20575 CrossRefPubMedGoogle Scholar
  39. 39.
    Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197.  https://doi.org/10.1200/JCO.2007.14.8163 CrossRefPubMedGoogle Scholar
  40. 40.
    Rider WD (1963) Radiation damage to the brain--a new syndrome. J Can Assoc Radiol 14:67–69Google Scholar
  41. 41.
    Wilson CB, Crafts D, Levin V (1977) Brain tumors: criteria of response and definition of recurrence. Natl Cancer Inst Monogr 46:197–203PubMedGoogle Scholar
  42. 42.
    Parvez K, Parvez A, Zadeh G (2014) The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15:11832–11846.  https://doi.org/10.3390/ijms150711832 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Becker G, Kocher M, Kortmann RD, Paulsen F, Jeremic B, Muller RP, Bamberg M (2002) Radiation therapy in the multimodal treatment approach of pituitary adenoma. Strahlenther Onkol 178:173–186CrossRefPubMedGoogle Scholar
  44. 44.
    Zaugg M, Adaman O, Pescia R, Landolt AM (1995) External irradiation of macroinvasive pituitary adenomas with telecobalt: a retrospective study with long-term follow-up in patients irradiated with doses mostly of between 40–45 Gy. Int J Radiat Oncol Biol Phys 32:671–680.  https://doi.org/10.1016/0360-3016(94)00620-z CrossRefPubMedGoogle Scholar
  45. 45.
    Olar A, Wani KM, Alfaro-Munoz KD, Heathcock LE, van Thuijl HF, Gilbert MR, Armstrong TS, Sulman EP, Cahill DP, Vera-Bolanos E, Yuan Y, Reijneveld JC, Ylstra B, Wesseling P, Aldape KD (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596.  https://doi.org/10.1007/s00401-015-1398-z CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, Division of Neuro-OncologyUniversity of Virginia Health SystemCharlottesvilleUSA
  2. 2.Claude Moore Health Sciences Library, University of Virginia Health SystemCharlottesvilleUSA
  3. 3.Department of Radiology and Medical Imaging, Division of NeuroradiologyUniversity of Virginia Health SystemCharlottesvilleUSA
  4. 4.Department of Pathology, Divisions of NeuropathologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations