CDK 4/6 inhibitors and stereotactic radiation in the management of hormone receptor positive breast cancer brain metastases

  • Nicholas B. Figura
  • Thrisha K. Potluri
  • Homan Mohammadi
  • Daniel E. Oliver
  • John A. Arrington
  • Timothy J. Robinson
  • Arnold B. Etame
  • Nam D. Tran
  • James K. Liu
  • Hatem Soliman
  • Peter A. Forsyth
  • Solmaz Sahebjam
  • H. Michael Yu
  • Hyo S. Han
  • Kamran A. AhmedEmail author
Clinical Study



Cyclin-dependent kinase (CDK) 4/6 inhibitors are becoming increasingly utilized in the setting of advanced, hormone receptor (HR+) positive breast cancer. Pre-clinical data suggests a potential synergy between radiation therapy (RT) and CDK4/6 inhibitors. We assessed clinical outcomes of patients treated at our institution with the use of CDK4/6 inhibitors and stereotactic radiation in the management of HR+ breast brain metastases.


A retrospective analysis of patients who received stereotactic radiotherapy for HR+ brain metastases within 6 months of CDK4/6 inhibitor administration was performed. The primary endpoint was neurotoxicity during or after stereotactic radiation. Secondary endpoints were local brain control, distant brain control, and overall survival (OS).


A total of 42 lesions treated with stereotactic radiation in 15 patients were identified. Patients received either palbociclib (n = 10; 67%) or abemaciclib (n = 5; 33%). RT was delivered concurrently, before, or after CDK4/6 inhibitors in 18 (43%), 9 (21%), and 15 (36%) lesions, respectively. Median follow-up following stereotactic radiation was 9 months. Two lesions (5%) developed radionecrosis, both of which received four prior RT courses to the affected lesion prior to onset of radionecrosis and subsequently managed with steroids and bevacizumab. Six- and 12-month local control of treated lesions was 88% and 88%, while 6- and 12-month distant brain control was 61% and 39%, respectively. Median OS was 36.7 months from the date of brain metastases diagnosis.


Stereotactic radiation to breast brain metastases was well tolerated alongside CDK4/6 inhibitors. Compared to historical data, brain metastases control rates are similar whereas survival appears prolonged.


CDK4/6 inhibitors Abemaciclib Palbociclib Breast cancer Brain metastases Stereotactic radiotherapy 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflicts of interest

Hyo S. Han declares that she has received a speaker’s honorarium from Lilly Pharmaceuticals; Peter A. Forsyth has received research funding and is on the advisory board for Pfizer.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (University of South Florida Institutional Review Board Pro00023399) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Milani A, Geuna E, Mittica G, Valabrega G (2014) Overcoming endocrine resistance in metastatic breast cancer: current evidence and future directions. World J Clin Oncol 5:990–1001. CrossRefGoogle Scholar
  2. 2.
    Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247. CrossRefGoogle Scholar
  3. 3.
    Preusser M, De Mattos-Arruda L, Thill M, Criscitiello C, Bartsch R, Ruhstaller T, de Azambuja E, Zielinski CC (2018) CDK4/6 inhibitors in the treatment of patients with breast cancer: summary of a multidisciplinary round-table discussion. ESMO Open 3:e000368. CrossRefGoogle Scholar
  4. 4.
    Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, Shparyk Y, Thummala AR, Voytko NL, Fowst C, Huang X, Kim ST, Randolph S, Slamon DJ (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16:25–35. CrossRefGoogle Scholar
  5. 5.
    Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, Park IH, Tredan O, Chen SC, Manso L, Freedman OC, Garnica Jaliffe G, Forrester T, Frenzel M, Barriga S, Smith IC, Bourayou N, Di Leo A (2017) MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol 35:3638–3646. CrossRefGoogle Scholar
  6. 6.
    Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Dieras V, Slamon DJ (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375:1925–1936. CrossRefGoogle Scholar
  7. 7.
    Tripathy D, Im SA, Colleoni M, Franke F, Bardia A, Harbeck N, Hurvitz SA, Chow L, Sohn J, Lee KS, Campos-Gomez S, Villanueva Vazquez R, Jung KH, Babu KG, Wheatley-Price P, De Laurentiis M, Im YH, Kuemmel S, El-Saghir N, Liu MC, Carlson G, Hughes G, Diaz-Padilla I, Germa C, Hirawat S, Lu YS (2018) Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 19:904–915. CrossRefGoogle Scholar
  8. 8.
    Hurvitz SAIS, Lu YS, Colleoni M, Franke FA, Bardia A, Harbeck N, Chow L, Sohn H et al (2019) Phase III MONALEESA-7 trial of premenopausal patients with HR+/HER22advanced breast cancer (ABC) treated with endocrine therapy6ribociclib: overall survival (OS) results. J Clin Oncol 37:2019CrossRefGoogle Scholar
  9. 9.
    Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, Crivellari D, Fey MF, Murray E, Pagani O, Simoncini E, Castiglione-Gertsch M, Gelber RD, Coates AS, Goldhirsch A, International Breast Cancer Study G (2006) Identifying breast cancer patients at risk for central nervous system (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 17:935–944. CrossRefGoogle Scholar
  10. 10.
    Mammoser AG, Groves MD (2010) Biology and therapy of neoplastic meningitis. Curr Oncol Rep 12:41–49. CrossRefGoogle Scholar
  11. 11.
    Witzel I, Oliveira-Ferrer L, Pantel K, Muller V, Wikman H (2016) Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res: BCR 18:8. CrossRefGoogle Scholar
  12. 12.
    Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, Gelbert LM, Shannon HE, Sanchez-Martinez C, De Dios A (2015) Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos 43:1360–1371. CrossRefGoogle Scholar
  13. 13.
    Tolaney S, Lin NU, Thornton D, Klise S, Costigan TM, Turner PK, Anders CK (2017) Abemaciclib for the treatment of brain metastases (BM) secondary to hormone receptor positive (HR+), HER2 negative breast cancer. J Clin Oncol 35:1019CrossRefGoogle Scholar
  14. 14.
    Whittaker S, Madani D, Joshi S, Chung SA, Johns T, Day B, Khasraw M, McDonald KL (2017) Combination of palbociclib and radiotherapy for glioblastoma. Cell Death Discov 3:17033. CrossRefGoogle Scholar
  15. 15.
    Hashizume R, Zhang A, Mueller S, Prados MD, Lulla RR, Goldman S, Saratsis AM, Mazar AP, Stegh AH, Cheng SY, Horbinski C, Haas-Kogan DA, Sarkaria JN, Waldman T, James CD (2016) Inhibition of DNA damage repair by the CDK4/6 inhibitor palbociclib delays irradiated intracranial atypical teratoid rhabdoid tumor and glioblastoma xenograft regrowth. Neuro Oncol 18:1519–1528. Google Scholar
  16. 16.
    Meng A, Pelton K (2016) EXTH-63. PRECLINICAL EFFICACY OF A CDK INHIBITOR (TG02) IN GLIOBLASTOMA. Neuro-Oncology 18:vi73. Google Scholar
  17. 17.
    Shi L, Dong B, Li Z, Lu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Wang Z, Xie Y (2009) Expression of ER-{alpha}36, a novel variant of estrogen receptor {alpha}, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol 27:3423–3429. CrossRefGoogle Scholar
  18. 18.
    Butt AJ, McNeil CM, Musgrove EA, Sutherland RL (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12(Suppl 1):S47–S59. CrossRefGoogle Scholar
  19. 19.
    Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29:217–233. CrossRefGoogle Scholar
  20. 20.
    Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10:331S–336SCrossRefGoogle Scholar
  21. 21.
    Sahebjam S, Rhun EL, Kulanthaivel P, Turner PK, Klise S, Wang HT, Tolaney SM (2016) Assessment of concentrations of abemaciclib and its major active metabolites in plasma, CSF, and brain tumor tissue in patients with brain metastases secondary to hormone receptor positive (HR+) breast cancer. J Clin Oncol 34:526–526. CrossRefGoogle Scholar
  22. 22.
    Tolaney S, Sahebjam S, Le Rhun E, Lin N, Markel Bear M, Yang Z, Chen Y, Anders C (2019) Abstract P1–19-01: a phase 2 study of abemaciclib in patients with leptomeningeal metastases secondary to HR+, HER2- breast cancer. Cancer Res. Google Scholar
  23. 23.
    Anders CK, Rhun EL, Bachelot TD, Yardley DA, Awada A, Conte PF, Kabos P, Bear M, Yang Z, Chen Y, Tolaney SM (2019) A phase II study of abemaciclib in patients (pts) with brain metastases (BM) secondary to HR+, HER2- metastatic breast cancer (MBC). J Clin Oncol 37:1017–1017. CrossRefGoogle Scholar
  24. 24.
    Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, Bendszus M, Brown PD, Camidge DR, Chang SM, Dancey J, de Vries EG, Gaspar LE, Harris GJ, Hodi FS, Kalkanis SN, Linskey ME, Macdonald DR, Margolin K, Mehta MP, Schiff D, Soffietti R, Suh JH, van den Bent MJ, Vogelbaum MA, Wen PY, Response Assessment in Neuro-Oncology g (2015) Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 16:e270–278. CrossRefGoogle Scholar
  25. 25.
    Kondziolka D, Kano H, Harrison GL, Yang HC, Liew DN, Niranjan A, Brufsky AM, Flickinger JC, Lunsford LD (2011) Stereotactic radiosurgery as primary and salvage treatment for brain metastases from breast cancer. Clinical article. J Neurosurg 114:792–800. CrossRefGoogle Scholar
  26. 26.
    Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, Kenjyo M, Oya N, Hirota S, Shioura H, Kunieda E, Inomata T, Hayakawa K, Katoh N, Kobashi G (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491. CrossRefGoogle Scholar
  27. 27.
    Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47:291–298CrossRefGoogle Scholar
  28. 28.
    Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, Romano A, Enrici RM (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol (London, England) 6:48. CrossRefGoogle Scholar
  29. 29.
    Martin AM, Cagney DN, Catalano PJ, Alexander BM, Redig AJ, Schoenfeld JD, Aizer AA (2018) Immunotherapy and symptomatic radiation necrosis in patients with brain metastases treated with stereotactic radiation. JAMA Oncol 4:1123–1124. CrossRefGoogle Scholar
  30. 30.
    Ahmed KA, Abuodeh YA, Echevarria MI, Arrington JA, Stallworth DG, Hogue C, Naghavi AO, Kim S, Kim Y, Patel BG, Sarangkasiri S, Johnstone PA, Sahebjam S, Khushalani NI, Forsyth PA, Harrison LB, Yu M, Etame AB, Caudell JJ (2016) Clinical outcomes of melanoma brain metastases treated with stereotactic radiosurgery and anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, BRAF inhibitor, or conventional chemotherapy. Ann Oncol: Off J Eur Soc Med Oncol/ESMO 27:2288–2294. CrossRefGoogle Scholar
  31. 31.
    Ahmed KA, Kim S, Arrington J, Naghavi AO, Dilling TJ, Creelan BC, Antonia SJ, Caudell JJ, Harrison LB, Sahebjam S, Gray JE, Etame AB, Johnstone PA, Yu M, Perez BA (2017) Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases. J Neuro-Oncol 133:331–338. CrossRefGoogle Scholar
  32. 32.
    Williams NL, Wuthrick EJ, Kim H, Palmer JD, Garg S, Eldredge-Hindy H, Daskalakis C, Feeney KJ, Mastrangelo MJ, Kim LJ, Sato T, Kendra KL, Olencki T, Liebner DA, Farrell CJ, Evans JJ, Judy KD, Andrews DW, Dicker AP, Werner-Wasik M, Shi W (2017) Phase 1 study of ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases. Int J Radiat Oncol Biol Phys 99:22–30. CrossRefGoogle Scholar
  33. 33.
    Hubbeling HG, Schapira EF, Horick NK, Goodwin KEH, Lin JJ, Oh KS, Shaw AT, Mehan WA, Shih HA, Gainor JF (2018) Safety of combined PD-1 pathway inhibition and intracranial radiation therapy in non-small cell lung cancer. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 13:550–558. CrossRefGoogle Scholar
  34. 34.
    Patel KR, Chowdhary M, Switchenko JM, Kudchadkar R, Lawson DH, Cassidy RJ, Prabhu RS, Khan MK (2016) BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis. Melanoma Res 26:387–394. CrossRefGoogle Scholar
  35. 35.
    Ahmed KA, Freilich JM, Sloot S, Figura N, Gibney GT, Weber JS, Sarangkasiri S, Chinnaiyan P, Forsyth PA, Etame AB, Rao NG (2015) LINAC-based stereotactic radiosurgery to the brain with concurrent vemurafenib for melanoma metastases. J Neuro-Oncol 122:121–126. CrossRefGoogle Scholar
  36. 36.
    Cadoo KA, Gucalp A, Traina TA (2014) Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer (Dove Med Press) 6:123–133. Google Scholar
  37. 37.
    Tripathy D, Bardia A, Sellers WR (2017) Ribociclib (LEE011): Mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin Cancer Res 23:3251–3262. CrossRefGoogle Scholar
  38. 38.
    Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack RS, Neubauer BL, Young J, Chan EM, Iversen P, Cronier D, Kreklau E, de Dios A (2014) Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs 32:825–837. CrossRefGoogle Scholar
  39. 39.
    Hans S, Cottu P, Kirova YM (2018) Preliminary results of the association of Palbociclib and radiotherapy in metastatic breast cancer patients. Radiother Oncol 126:181. CrossRefGoogle Scholar
  40. 40.
    Meattini I, Desideri I, Scotti V, Simontacchi G, Livi L (2018) Ribociclib plus letrozole and concomitant palliative radiotherapy for metastatic breast cancer. Breast 42:1–2. CrossRefGoogle Scholar
  41. 41.
    Kawamoto T, Shikama N, Sasai K (2019) Severe acute radiation-induced enterocolitis after combined palbociclib and palliative radiotherapy treatment. Radiother Oncol 131:240–241. CrossRefGoogle Scholar
  42. 42.
    Lee CL, Oh P, Xu ES, Ma Y, Kim Y, Daniel AR, Kirsch DG (2018) Blocking cyclin-dependent kinase 4/6 during single dose versus fractionated radiation therapy leads to opposite effects on acute gastrointestinal toxicity in mice. Int J Radiat Oncol Biol Phys. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nicholas B. Figura
    • 1
  • Thrisha K. Potluri
    • 1
  • Homan Mohammadi
    • 1
  • Daniel E. Oliver
    • 1
  • John A. Arrington
    • 2
  • Timothy J. Robinson
    • 1
  • Arnold B. Etame
    • 3
  • Nam D. Tran
    • 3
  • James K. Liu
    • 3
  • Hatem Soliman
    • 4
  • Peter A. Forsyth
    • 3
  • Solmaz Sahebjam
    • 3
  • H. Michael Yu
    • 1
  • Hyo S. Han
    • 4
  • Kamran A. Ahmed
    • 1
    Email author
  1. 1.Department of Radiation OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.Department of RadiologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  3. 3.Department of Neuro OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  4. 4.Department of Breast OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations