Survival and prognostic factors in surgically treated brain metastases

  • Vasileios K. KavouridisEmail author
  • Maya Harary
  • Alexander F. C. Hulsbergen
  • Yu T. Lo
  • David A. Reardon
  • Ayal A. Aizer
  • J. Bryan Iorgulescu
  • Timothy R. Smith
Clinical Study



While surgery and radiation remain the mainstays of therapy for all patients with brain metastases (BM), the management is moving to a more individualized approach based on the underlying tumor. We sought to identify prognostic factors of both intracranial progression (IC-PFS) and overall survival (OS) in a surgical cohort.


We retrospectively reviewed the records of 1015 patients treated surgically for BM at Brigham and Women’s Hospital (2007–2017). Kaplan–Meier curves were used for OS and IC-PFS and Cox proportional hazards models were built to assess for predictive factors.


Common origins were lung (43.9%), breast (14.4%), and melanoma (13.8%). Median OS for the cohort was 15.4 months (95% confidence interval [95%CI] 14.1–17.1). Breast cancer (22.1 months, 95%CI 17.8–30.3) and colorectal cancer (10.6 months, 95%CI 7.2–15.4) had the longest and shortest OS, respectively. On multivariable Cox regression, significant prognostic factors of shorter OS were age (HR 1.01, 95%CI 1.01–1.02), number of lesions (HR 1.56, 95%CI 1.28–1.89), extracranial spread at BM diagnosis (HR 1.26, 95%CI 1.05–1.52), and KPS (HR 0.98, 95%CI 0.98–0.99). Regarding molecular factors, all driver mutations in lung adenocarcinoma had a favorable effect (EGFR, HR 0.53, 95%CI 0.31–0.89; ALK, HR 0.28, 95%CI 0.12–0.66; KRAS, HR 0.65, 95%CI 0.47–0.92), triple negative status predicted poor prognosis in breast adenocarcinoma (HR 2.04, 95%CI 1.13–3.69), while no effect of BRAF/NRAS mutations was demonstrated in melanoma BMs.


Our results corroborate the role of tumor origin and systemic as well as intracranial spread in OS. Heterogeneity within histologies was further explained by molecular alterations.


Brain metastases Surgery Prognostic factors Treatment outcome 



This research received no specific grant from any public, commercial or not-for-profit agency.

Compliance with ethical standards

Conflict of interest

VK. Kavouridis, M. Harary, A.F.C Hulsbergen, D.A. Reardon, A.A. Aizer, T.R. Smith declares that they have no conflict of interest. J.B. Iorgulescu is supported by an NIH 5T32HL007627-34 award.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872CrossRefGoogle Scholar
  2. 2.
    Fox BD, Cheung VJ, Patel AJ, Suki D, Rao G (2011) Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 22(1–6):vGoogle Scholar
  3. 3.
    Arvold ND, Lee EQ, Mehta MP et al (2016) Updates in the management of brain metastases. Neuro-oncology 18:1043–1065CrossRefGoogle Scholar
  4. 4.
    Nieder C, Norum J, Stemland JG, Dalhaug A (2010) Resource utilization in patients with brain metastases managed with best supportive care, radiotherapy and/or surgical resection: a Markov analysis. Oncology 78:348–355CrossRefGoogle Scholar
  5. 5.
    Gaspar L, Scott C, Rotman M et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751CrossRefGoogle Scholar
  6. 6.
    Sperduto PW, Jiang W, Brown PD et al (2017) Estimating survival in melanoma patients with brain metastases: an update of the Graded Prognostic Assessment for melanoma using molecular markers (Melanoma-molGPA). Int J Radiat Oncol Biol Phys 99:812–816CrossRefGoogle Scholar
  7. 7.
    Sperduto PW, Kased N, Roberge D et al (2012) Summary report on the Graded Prognostic Assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 30:419–425CrossRefGoogle Scholar
  8. 8.
    Sperduto PW, Yang TJ, Beal K et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the Graded Prognostic Assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 3:827–831CrossRefGoogle Scholar
  9. 9.
    Gaspar LE, Scott C, Murray K, Curran W (2000) Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int J Radiat Oncol Biol Phys 47:1001–1006CrossRefGoogle Scholar
  10. 10.
    Villa S, Weber DC, Moretones C et al (2011) Validation of the new Graded Prognostic Assessment scale for brain metastases: a multicenter prospective study. Radiat Oncol (Lond, Engl) 6:23CrossRefGoogle Scholar
  11. 11.
    Nieder C, Geinitz H, Molls M (2008) Validation of the Graded Prognostic Assessment index for surgically treated patients with brain metastases. Anticancer Res 28:3015–3017Google Scholar
  12. 12.
    Cagney DN, Martin AM, Catalano PJ et al (2017) Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro-oncology 19:1511–1521CrossRefGoogle Scholar
  13. 13.
    Dawood S, Broglio K, Esteva FJ et al (2008) Defining prognosis for women with breast cancer and CNS metastases by HER2 status. Ann Oncol 19:1242–1248CrossRefGoogle Scholar
  14. 14.
    Eichler AF, Kuter I, Ryan P, Schapira L, Younger J, Henson JW (2008) Survival in patients with brain metastases from breast cancer: the importance of HER-2 status. Cancer 112:2359–2367CrossRefGoogle Scholar
  15. 15.
    Melisko ME, Moore DH, Sneed PK, De Franco J, Rugo HS (2008) Brain metastases in breast cancer: clinical and pathologic characteristics associated with improvements in survival. J Neurooncol 88:359–365CrossRefGoogle Scholar
  16. 16.
    Martin AM, Cagney DN, Catalano PJ et al (2017) Brain metastases in newly diagnosed breast cancer: a population-based study. JAMA Oncol 3:1069–1077CrossRefGoogle Scholar
  17. 17.
    Go PH, Klaassen Z, Meadows MC, Chamberlain RS (2011) Gastrointestinal cancer and brain metastasis: a rare and ominous sign. Cancer 117:3630–3640CrossRefGoogle Scholar
  18. 18.
    Park SJ, Kim HT, Lee DH et al (2012) Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer (Amsterdam, Netherlands) 77:556–560CrossRefGoogle Scholar
  19. 19.
    Robin TP, Camidge DR, Stuhr K et al (2018) Excellent outcomes with radiosurgery for multiple brain metastases in ALK and EGFR driven non-small cell lung cancer. J Thorac Oncol 13:715–720CrossRefGoogle Scholar
  20. 20.
    Renaud S, Schaeffer M, Voegeli AC et al (2016) Impact of EGFR mutations and KRAS amino acid substitution on the response to radiotherapy for brain metastasis of non-small-cell lung cancer. Future Oncol (Lond, Engl) 12:59–70CrossRefGoogle Scholar
  21. 21.
    Griguolo G, Jacot W, Kantelhardt E et al (2018) External validation of modified breast Graded Prognostic Assessment for breast cancer patients with brain metastases: A multicentric European experience. Breast (Edinb, Scotl) 37:36–41CrossRefGoogle Scholar
  22. 22.
    Sperduto PW, Jiang W, Brown PD et al (2017) The prognostic value of BRAF, C-KIT, and NRAS mutations in melanoma patients with brain metastases. Int J Radiat Oncol Biol Phys 98:1069–1077CrossRefGoogle Scholar
  23. 23.
    Fang P, Boehling NS, Koay EJ et al (2018) Melanoma brain metastases harboring BRAF (V600 K) or NRAS mutations are associated with an increased local failure rate following conventional therapy. J Neurooncol 137:67–75CrossRefGoogle Scholar
  24. 24.
    Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489CrossRefGoogle Scholar
  25. 25.
    Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491CrossRefGoogle Scholar
  26. 26.
    Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141CrossRefGoogle Scholar
  27. 27.
    Li J, Bentzen SM, Li J, Renschler M, Mehta MP (2008) Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys 71:64–70CrossRefGoogle Scholar
  28. 28.
    Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044CrossRefGoogle Scholar
  29. 29.
    Kalani MY, Filippidis AS, Kalani MA et al (2010) Gamma Knife surgery combined with resection for treatment of a single brain metastasis: preliminary results. J Neurosurg 113(Suppl):90–96CrossRefGoogle Scholar
  30. 30.
    Gans JH, Raper DM, Shah AH et al (2013) The role of radiosurgery to the tumor bed after resection of brain metastases. Neurosurgery 72:317–325 (discussion 25–26) CrossRefGoogle Scholar
  31. 31.
    Smith TR, Lall RR, Lall RR et al (2014) Survival after surgery and stereotactic radiosurgery for patients with multiple intracranial metastases: results of a single-center retrospective study. J Neurosurg 121:839–845CrossRefGoogle Scholar
  32. 32.
    Brown PD, Ballman KV, Cerhan JH et al (2017) Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 18:1049–1060CrossRefGoogle Scholar
  33. 33.
    Hwang SW, Abozed MM, Hale A et al (2010) Adjuvant Gamma Knife radiosurgery following surgical resection of brain metastases: a 9-year retrospective cohort study. J Neurooncol 98:77–82CrossRefGoogle Scholar
  34. 34.
    Elaimy AL, Mackay AR, Lamoreaux WT et al (2011) Multimodality treatment of brain metastases: an institutional survival analysis of 275 patients. World J Surg Oncol 9:69CrossRefGoogle Scholar
  35. 35.
    Hsieh J, Elson P, Otvos B et al (2015) Tumor progression in patients receiving adjuvant whole-brain radiotherapy vs localized radiotherapy after surgical resection of brain metastases. Neurosurgery 76:411–420CrossRefGoogle Scholar
  36. 36.
    NCCN Clinical Practice Guidelines in Oncology: CNS Tumors, version 2.2018Google Scholar
  37. 37.
    Larkin J, Del Vecchio M, Ascierto PA et al (2014) Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: an open-label, multicentre, safety study. Lancet Oncol 15:436–444CrossRefGoogle Scholar
  38. 38.
    Tawbi HA, Forsyth PA, Algazi A et al (2018) Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med 379:722–730CrossRefGoogle Scholar
  39. 39.
    Iorgulescu JB, Harary M, Zogg CK et al (2018) Improved risk-adjusted survival for melanoma brain metastases in the era of checkpoint blockade immunotherapies: results from a national cohort. Cancer Immunol Res 6(9):1039–1045CrossRefGoogle Scholar
  40. 40.
    McGranahan T, Nagpal S (2017) A neuro-oncologist’s perspective on management of brain metastases in patients with EGFR mutant non-small cell lung cancer. Curr Treat Options Oncol 18:22CrossRefGoogle Scholar
  41. 41.
    Peters S, Camidge DR, Shaw AT et al (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838CrossRefGoogle Scholar
  42. 42.
    Ammirati M, Cobbs CS, Linskey ME et al (2010) The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:85–96CrossRefGoogle Scholar
  43. 43.
    Arbit E, Wronski M, Burt M, Galicich JH (1995) The treatment of patients with recurrent brain metastases. A retrospective analysis of 109 patients with nonsmall cell lung cancer. Cancer 76:765–773CrossRefGoogle Scholar
  44. 44.
    Bindal RK, Sawaya R, Leavens ME, Hess KR, Taylor SH (1995) Reoperation for recurrent metastatic brain tumors. J Neurosurg 83:600–604CrossRefGoogle Scholar
  45. 45.
    Stark AM, Tscheslog H, Buhl R, Held-Feindt J, Mehdorn HM (2005) Surgical treatment for brain metastases: prognostic factors and survival in 177 patients. Neurosurg Rev 28:115–119CrossRefGoogle Scholar
  46. 46.
    Al-Zabin M, Ullrich WO, Brawanski A, Proescholdt MA (2010) Recurrent brain metastases from lung cancer: the impact of reoperation. Acta Neurochir 152:1887–1892CrossRefGoogle Scholar
  47. 47.
    Schackert G, Schmiedel K, Lindner C, Leimert M, Kirsch M (2013) Surgery of recurrent brain metastases: retrospective analysis of 67 patients. Acta Neurochir 155:1823–1832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vasileios K. Kavouridis
    • 1
    • 2
    Email author
  • Maya Harary
    • 1
    • 2
  • Alexander F. C. Hulsbergen
    • 1
    • 2
  • Yu T. Lo
    • 1
    • 2
  • David A. Reardon
    • 2
    • 3
  • Ayal A. Aizer
    • 2
    • 4
  • J. Bryan Iorgulescu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Timothy R. Smith
    • 1
    • 2
  1. 1.Department of Neurosurgery, Computational Neuroscience Outcomes CenterBrigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA
  4. 4.Department of Radiation OncologyBrigham and Women’s Hospital, Dana-Farber Cancer InstituteBostonUSA
  5. 5.Department of PathologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations