Advertisement

Journal of Neuro-Oncology

, Volume 143, Issue 2, pp 187–196 | Cite as

Isocitrate dehydrogenase1 mutation reduces the pericyte coverage of microvessels in astrocytic tumours

  • Chao Sun
  • Yuanlin Zhao
  • Jiankuan Shi
  • Jin Zhang
  • Yuan Yuan
  • Yu Gu
  • Feng Zhang
  • Xing Gao
  • Chao Wang
  • Yingmei Wang
  • Zhe Wang
  • Peizhen Hu
  • Junhui Qin
  • Liming Xiao
  • Ting Chang
  • Liang Wang
  • Yibin Xi
  • Hong Yin
  • Huangtao Chen
  • Lijun Zhang
  • Guang Cheng
  • Jiaji Lin
  • MingMing Zhang
  • Zhuyi LiEmail author
  • Jing YeEmail author
Laboratory Investigation

Abstract

Introduction

Tumour-associated angiogenesis is associated with the malignancy and poor prognosis of glioma. Isocitrate dehydrogenase (IDH) mutations are present in the majority of lower-grade (WHO grade II and III) and secondary glioblastomas, but their roles in tumour angiogenesis remain unclear.

Methods

Using magnetic resonance imaging (MRI), the cerebral blood flow (CBF) of IDH-mutated glioma was measured and compared with the IDH-wildtype glioma. The densities of microvessels in IDH-mutated and wildtype astrocytoma and glioblastoma were assessed by immunohistochemical (IHC) staining with CD34, and the pericytes were labelled with α-smooth muscle antigen (α-SMA), neural-glial antigen 2 (NG2) and PDGF receptor-β (PDGFR-β), respectively. Furthermore, glia-specific mutant IDH1 knock-in mice were generated to evaluate the roles of mutant IDH1 on brain vascular architectures. The transcriptions of the angiogenesis-related genes were assessed in TCGA datasets, including ANGPT1, PDGFB and VEGFA. The expressions of these genes were further determined by western blot in U87-MG cells expressing a mutant IDH1 or treated with 2-HG.

Results

The MRI results indicated that CBF was reduced in the IDH-mutated gliomas. The IHC staining showed that the pericyte coverages of microvessels were significantly decreased, but the microvessel densities (MVDs) were only slightly decreased in IDH-mutated glioma. The mutant IDH1 knock-in also impeded the pericyte coverage of brain microvessels in mice. Moreover, the TCGA database showed the mRNA levels of angiogenesis factors, including ANGPT1, PDGFB and VEGFA, were downregulated, and their promoters were also highly hyper-methylated in IDH-mutated gliomas. In addition, both mutant IDH1 and D-2-HG could downregulate the expression of these genes in U87-MG cells.

Conclusions

Our results suggested that IDH mutations could reduce the pericyte coverage of microvessels in astrocytic tumours by inhibiting the expression of angiogenesis factors. As vascular pericytes play an essential role in maintaining functional blood vessels to support tumour growth, our findings imply a potential avenue of therapeutic strategy for IDH-mutated gliomas.

Keywords

Glioma Angiogenesis Isocitrate dehydrogenase Pericytes 

Notes

Acknowledgements

We thank Shengcai Lin for valuable discussion and valuable suggestions.

Funding

This study was funded by the National Natural Science Foundation of China (81572471 and 81772659 to J.Y., 81670792 to L.J.Z.; 81372457 to G.C.; 31671416 to P.Z.H.), State Key Laboratory of Cancer Biology (CBSKL2015Z11) and the Booster Program of Xijing Hospital (XJZT15ZL03).

Compliance with ethical standards

Competing interests

The authors indicate no potential conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Mouse procedure protocols were approved by the Animal Ethics Committee of Fourth Military Medical University.

Supplementary material

11060_2019_3156_MOESM1_ESM.jpg (83 kb)
Supplementary material 1 (JPEG 84 kb)
11060_2019_3156_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)

References

  1. 1.
    Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622.  https://doi.org/10.1038/nrn2175 CrossRefPubMedGoogle Scholar
  2. 2.
    Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology 7:452–464.  https://doi.org/10.1215/S1152851705000232 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405.  https://doi.org/10.1038/nn.2946 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152.  https://doi.org/10.1016/j.cell.2013.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sun H, Guo D, Su Y, Yu D, Wang Q, Wang T, Zhou Q, Ran X, Zou Z (2014) Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLoS ONE 9:e114246.  https://doi.org/10.1371/journal.pone.0114246 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773.  https://doi.org/10.1056/NEJMoa0808710 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cohen AL, Holmen SL, Colman H (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 13:345.  https://doi.org/10.1007/s11910-013-0345-4 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347.  https://doi.org/10.1215/15228517-2009-025 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567.  https://doi.org/10.1016/j.ccr.2010.11.015 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, Cairns RA, McCracken S, Wakeham A, Haight J, Ten AY, Snow B, Ueda T, Inoue S, Yamamoto K, Ko M, Rao A, Yen KE, Su SM, Mak TW (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26:2038–2049.  https://doi.org/10.1101/gad.198200.112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiong J, Tan WL, Pan JW, Wang Y, Yin B, Zhang J, Geng DY (2016) Detecting isocitrate dehydrogenase gene mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular density. J Magn Reson Imaging (JMRI) 43:45–54.  https://doi.org/10.1002/jmri.24958 CrossRefGoogle Scholar
  12. 12.
    Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling A, Bendszus M, Wiestler B (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5:16238.  https://doi.org/10.1038/srep16238 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shen N, Zhao L, Jiang J, Jiang R, Su C, Zhang S, Tang X, Zhu W (2016) Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging (JMRI) 44:620–632.  https://doi.org/10.1002/jmri.25191 CrossRefGoogle Scholar
  14. 14.
    Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A, Harris IS, Holmes R, Wakeham A, Haight J, You-Ten A, Li WY, Schalm S, Su SM, Virtanen C, Reifenberger G, Ohashi PS, Barber DL, Figueroa ME, Melnick A, Zuniga-Pflucker JC, Mak TW (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488:656–659.  https://doi.org/10.1038/nature11323 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal.  https://doi.org/10.1126/scisignal.2004088 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404.  https://doi.org/10.1158/2159-8290.CD-12-0095 CrossRefGoogle Scholar
  17. 17.
    Agopiantz M, Forgez P, Casse JM, Lacomme S, Charra-Brunaud C, Clerc-Urmes I, Morel O, Bonnet C, Gueant JL, Vignaud JM, Gompel A, Gauchotte G (2017) Expression of neurotensin receptor 1 in endometrial adenocarcinoma is correlated with histological grade and clinical outcome. Virch Arch 471:521–530.  https://doi.org/10.1007/s00428-017-2215-y CrossRefGoogle Scholar
  18. 18.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410.  https://doi.org/10.1038/nrc1093 CrossRefPubMedGoogle Scholar
  19. 19.
    Aird WC (2009) Molecular heterogeneity of tumor endothelium. Cell Tissue Res 335:271–281.  https://doi.org/10.1007/s00441-008-0672-y CrossRefPubMedGoogle Scholar
  20. 20.
    Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354.  https://doi.org/10.1038/nature12626 CrossRefPubMedGoogle Scholar
  21. 21.
    Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498.  https://doi.org/10.1148/radiol.2472070898 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yamashita K, Hiwatashi A, Togao O, Kikuchi K, Hatae R, Yoshimoto K, Mizoguchi M, Suzuki SO, Yoshiura T, Honda H (2016) MR imaging-based analysis of glioblastoma multiforme: estimation of IDH1 mutation status. Am J Neuroradiol (AJNR) 37:58–65.  https://doi.org/10.3174/ajnr.A4491 CrossRefGoogle Scholar
  23. 23.
    Brendle C, Hempel JM, Schittenhelm J, Skardelly M, Tabatabai G, Bender B, Ernemann U, Klose U (2018) Glioma grading and determination of IDH mutation status and ATRX loss by DCE and ASL perfusion. Clin Neuroradiol 28:421–428.  https://doi.org/10.1007/s00062-017-0590-z CrossRefPubMedGoogle Scholar
  24. 24.
    Sa-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45:327–347.  https://doi.org/10.1007/s12035-012-8244-2 CrossRefPubMedGoogle Scholar
  25. 25.
    van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89.  https://doi.org/10.1016/j.ijcard.2015.03.258 CrossRefPubMedGoogle Scholar
  26. 26.
    Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038CrossRefPubMedGoogle Scholar
  27. 27.
    Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000.  https://doi.org/10.1016/S0002-9440(10)64920-6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, Boas DA, Sakadzic S, Zlokovic BV (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416.  https://doi.org/10.1038/nn.4489 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Svensson A, Ozen I, Genove G, Paul G, Bengzon J (2015) Endogenous brain pericytes are widely activated and contribute to mouse glioma microvasculature. PLoS ONE 10:e0123553.  https://doi.org/10.1371/journal.pone.0123553 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455.  https://doi.org/10.1177/0271678X15610340 CrossRefPubMedGoogle Scholar
  31. 31.
    Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110.  https://doi.org/10.1016/j.neuron.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Winkler EA, Rutledge WC, Kalani MYS, Rolston JD (2017) Pericytes regulate cerebral blood flow and neuronal health at a capillary level. Neurosurgery 81:N37–N38.  https://doi.org/10.1093/neuros/nyx457 CrossRefPubMedGoogle Scholar
  33. 33.
    Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60.  https://doi.org/10.1038/nature13165 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427.  https://doi.org/10.1016/j.neuron.2010.09.043 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhou W, Chen C, Shi Y, Wu Q, Gimple RC, Fang X, Huang Z, Zhai K, Ke SQ, Ping YF, Feng H, Rich JN, Yu JS, Bao S, Bian XW (2017) Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21(591–603):e594.  https://doi.org/10.1016/j.stem.2017.10.002 CrossRefGoogle Scholar
  36. 36.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522.  https://doi.org/10.1016/j.ccr.2010.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561.  https://doi.org/10.1038/nature09522 CrossRefPubMedGoogle Scholar
  38. 38.
    Turunen MP, Yla-Herttuala S (2011) Epigenetic regulation of key vascular genes and growth factors. Cardiovasc Res 90:441–446.  https://doi.org/10.1093/cvr/cvr109 CrossRefPubMedGoogle Scholar
  39. 39.
    Culmes M, Eckstein HH, Burgkart R, Nussler AK, Guenther M, Wagner E, Pelisek J (2013) Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur J Cell Biol 92:70–79.  https://doi.org/10.1016/j.ejcb.2012.11.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Augello C, Gianelli U, Falcone R, Tabano S, Savi F, Bonaparte E, Ciboddo M, Paganini L, Parafioriti A, Ricca D, Lonati S, Cattaneo D, Fracchiolla NS, Iurlo A, Cortelezzi A, Bosari S, Miozzo M, Sirchia SM (2015) PDGFB hypomethylation is a favourable prognostic biomarker in primary myelofibrosis. Leuk Res 39:236–241.  https://doi.org/10.1016/j.leukres.2014.11.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chao Sun
    • 1
    • 2
  • Yuanlin Zhao
    • 2
  • Jiankuan Shi
    • 2
    • 3
  • Jin Zhang
    • 2
  • Yuan Yuan
    • 2
  • Yu Gu
    • 2
  • Feng Zhang
    • 2
  • Xing Gao
    • 2
  • Chao Wang
    • 4
  • Yingmei Wang
    • 2
  • Zhe Wang
    • 2
  • Peizhen Hu
    • 2
  • Junhui Qin
    • 2
  • Liming Xiao
    • 2
  • Ting Chang
    • 1
  • Liang Wang
    • 5
  • Yibin Xi
    • 6
  • Hong Yin
    • 6
  • Huangtao Chen
    • 7
  • Lijun Zhang
    • 8
  • Guang Cheng
    • 9
  • Jiaji Lin
    • 1
  • MingMing Zhang
    • 10
  • Zhuyi Li
    • 1
    Email author
  • Jing Ye
    • 1
    • 2
    Email author
  1. 1.Department of Neurology, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  2. 2.State Key Laboratory of Cancer Biology and Department of Pathology, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of NeurologyShaanxi People HospitalXi’anChina
  4. 4.Department of PathologyChengdu Military General HospitalChengduChina
  5. 5.Department of Neurosurgery, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  6. 6.Department of Radiology, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  7. 7.Health Science CenterXi’an Jiaotong UniversityXi’anChina
  8. 8.Department of Clinical Laboratory, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  9. 9.Department of NeurosurgeryXijing Hospital, The Fourth Military Medical UniversityXi’anChina
  10. 10.Department of CardiologyTangdu Hospital, The Fourth Military Medical UniversityXi’anChina

Personalised recommendations