Advertisement

Journal of Neuro-Oncology

, Volume 140, Issue 3, pp 519–527 | Cite as

KX2-361: a novel orally bioavailable small molecule dual Src/tubulin inhibitor that provides long term survival in a murine model of glioblastoma

  • Michael J. Ciesielski
  • Yahao Bu
  • Stephan A. Munich
  • Paola Teegarden
  • Michael P. Smolinski
  • James L. Clements
  • Johnson Y. N. Lau
  • David G. Hangauer
  • Robert A. Fenstermaker
Laboratory Investigation

Abstract

Purpose

A major challenge to developing new therapies for patients with malignant brain tumors is that relatively few small molecule anticancer drugs penetrate the blood–brain barrier (BBB) well enough to provide therapeutically effective concentrations in brain tissue before drug exposure in non-CNS tissues results in unacceptable toxicity.

Methods

KX2-361, a member of a novel family of compounds with Src-kinase and tubulin polymerization inhibitory activity, demonstrates good oral bioavailability and readily crosses the BBB in mice. The objective of this study was to investigate the activity of KX2-361 against human and murine glioma cells and assess its therapeutic effect in a syngeneic orthotopic model of glioblastoma.

Results

In addition to reducing the level of Src autophosphorylation in the GL261 murine glioblastoma cell line, KX2-361 binds directly to tubulin and disrupts microtubule architecture in glioma cells maintained in culture.

Conclusions

The drug is active in vivo against orthotopic GL261 gliomas in syngeneic C57BL/6 mice. Long term survival is not observed in mice lacking an adaptive immune system, indicating that KX2-361 works in concert with the host immune system to control tumor growth and promote long-term survival in the GL261 glioma model.

Keywords

Glioblastoma Temozolomide Blood–brain barrier KX2-361 Src Tubulin 

Notes

Acknowledgements

The authors are grateful for critical manuscript review and helpful suggestions provided by Drs. Sameer Urgaonkar and Murray Cutler.

Author contributions

MC, SM, and YB designed and conducted the majority of experiments and were primarily responsible for data analysis. MS designed and synthesized KX2-601. MC and JC wrote the majority of the paper. PT conducted the experiments assessing the impact of KX2-361 on Src autophosphorylation. JL, DH, and RF oversaw all aspects of operations and provided technical and expert advice.

Funding

This project was in part supported by the Roswell Park Alliance Foundation and National Cancer Institute Cancer Center Support Grant NIH P30 CA016056.

Compliance with ethical standards

Conflict of interest

YB, PT, MS, JC, JL, and DH hold equity in Athenex, Inc. MC, SM, and RF declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996CrossRefGoogle Scholar
  2. 2.
    Giese A, Westphal M (2001) Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol 127:217–225CrossRefGoogle Scholar
  3. 3.
    National Comprehensive Cancer Network (NCCN) (2018) Clinical practice guidelines in oncology, central nervous system cancers, version 1.2018—March 2018. Accessed 11 May 2018Google Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefGoogle Scholar
  5. 5.
    Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, Mahajan A, Schultz CJ, Erridge S, Baumert B, Hopkins KI, Tzuk-Shina T, Brown PD, Chakravarti A, Curran WJ Jr, Mehta MP (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091CrossRefGoogle Scholar
  6. 6.
    Zhang S, Yu D (2012) Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 33(3):122–128CrossRefGoogle Scholar
  7. 7.
    Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23(48):7928–7946CrossRefGoogle Scholar
  8. 8.
    Stettner MR, Wang W, Nabors LB, Bharara S, Flynn DC, Grammer JR, Gillespie GY, Gladson CL (2005) Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res 65:5535–5543CrossRefGoogle Scholar
  9. 9.
    An Z, Aksoy O, Zheng T, Fan QW, Weiss WA (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37(12):1561–1575CrossRefGoogle Scholar
  10. 10.
    Lu KV, Zhu S, Cvrljevic A, Huang TT, Sarkaria S, Ahkavan D, Dang J, Dinca EB, Plaisier SB, Oderberg I, Lee Y, Chen Z, Caldwell JS, Xie Y, Loo JA, Seligson D, Chakravari A, Lee FY, Weinmann R, Cloughesy TF, Nelson SF, Bergers G, Graeber T, Furnari FB, James CD, Cavenee WK, Johns TG, Mischel PS (2009) Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients. Cancer Res 69(17):6889–6898CrossRefGoogle Scholar
  11. 11.
    Weissenberger J, Steinbach JP, Malin G, Spada S, Rülicke T, Aguzzi A (1997) Development and malignant progression of astrocytomas in GFAP-v-Src transgenic mice. Oncogene 14(17):2005–2013CrossRefGoogle Scholar
  12. 12.
    Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR (2009) Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol 27(1):77–83CrossRefGoogle Scholar
  13. 13.
    Angers-Loustau A, Hering R, Werbowetski TE, Kaplan DR, Del Maestro RF (2004) SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions. Mol Cancer Res 2(11):595–605Google Scholar
  14. 14.
    Amos S, Martin PM, Polar GA, Parsons SJ, Hussaini IM (2005) Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase Cdelta/c-Src pathways in glioblastoma cells. J Biol Chem 280(9):7729–7738CrossRefGoogle Scholar
  15. 15.
    Lewis-Tuffin LJ, Feathers R, Hari P, Durand N, Li Z, Rodriguez FJ, Bakken K, Carlson B, Schoeder M, Sarkaria JN, Anastasiadis PZ (2015) Src family kinases differentially influence glioma growth and motility. Mol Oncol 9(9):1783–1798CrossRefGoogle Scholar
  16. 16.
    Tang Z, Araysi LM, Fathallah-Shaykh HM (2013) c-Src and neural Wiskott–Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas. PLoS ONE 8(9):e75436CrossRefGoogle Scholar
  17. 17.
    Eom KY, Cho BJ, Choi EJ, Kim JH, Chie EK, Wu HG, Kim IH, Paek SH, Kim JS, Kim IA (2016) The effect of chemoradiotherapy with SRC tyrosine kinase inhibitor, PP2 and temozolomide on malignant glioma cells in vitro and in vivo. Cancer Res Treat 48(2):687–697CrossRefGoogle Scholar
  18. 18.
    Huveldt D, Lewis-Tuffin LJ, Carlson BL, Schoeder MA, Rodriguez F, Giannini C, Galanis E, Sarkaria JN, Anastasiadis PZ (2013) Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion. PLoS ONE 8(2):e56505CrossRefGoogle Scholar
  19. 19.
    Agarwal S, Mittapalli RK, Zellmer DM, Gallardo JL, Donelson R, Seiler C, Decker SA, Santacruz KS, Pokorny JL, Sarkaria JN, Elmquist WF, Ohlfest JR (2012) Active efflux of Dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly targeted agents. Mol Cancer Ther 11(10):2183–2192CrossRefGoogle Scholar
  20. 20.
    Lassman AB, Pugh SL, Gilbert MR, Aldape KD, Geinoz S, Beumer JH, Chistner SM, Komaki R, DeAngelis LM, Gaur R, Youssef E, Wagner H, Won M, Mehta MP (2015) Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol 17(7):992–998CrossRefGoogle Scholar
  21. 21.
    Schiff D, Sarkaria J (2015) Dasatinib in recurrent glioblastoma: failure as a teacher. Neuro Oncol 17(7):910–911CrossRefGoogle Scholar
  22. 22.
    Smolinski MP, Bu Y, Clements J, Gelman IH, Hegab T, Cutler DL, Fang JWS, Fetterly G, Kwan R, Barnett A, Lau JYN, Hangauer DG (2018) Discovery of novel dual mechanism of action Src signaling and tubulin polymerization inhibitors (KX2-391 and KX2-361). J Med Chem 61(11):4704–4747. See Table S7, Supporting Information, for additional pharmacokinetic dataCrossRefGoogle Scholar
  23. 23.
    Seshadri M, Ciesielski MJ (2009) MRI-based characterization of vascular disruption by 5,6-dimethylxanthenone-acetic acid in gliomas. J Cereb Blood Flow Metab 29(8):1373–1382CrossRefGoogle Scholar
  24. 24.
    Ciesielski MJ, Kozbor D, Castanaro CA, Barone TA, Fenstermaker RA (2008) Therapeutic effect of a T helper cell supported CTL response induced by a survivin peptide vaccine against murine cerebral glioma. Cancer Immunol Immunother 57(12):1827–1835CrossRefGoogle Scholar
  25. 25.
    Anbalagan M, Carrier L, Glodowski S, Hangauer D, Shan B, Rowan BG (2012) KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor α positive breast cancer. Breast Cancer Res Treat 132(2):391–409CrossRefGoogle Scholar
  26. 26.
    Anbalagan M, Ali A, Jones RK, Marsden CG, Sheng M, Carrier L, Bu Y, Hangauer D, Rowan BG (2012) Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts. Mol Cancer Ther 11(9):1936–1947CrossRefGoogle Scholar
  27. 27.
    Liu T, Hu W, Dalton HJ, Choi HJ, Huang J, Kang Y, Pradeep S, Miyake T, Song JH, Wen Y, Lu C, Pecot CV, Bottsford-Miller J, Zand B, Jennings NB, Ivan C, Gallick GE, Baggerly KA, Hangauer DG, Coleman RL, Frumovitz M, Sood AK (2013) Targeting SRC and tubulin in mucinous ovarian carcinoma. Clin Cancer Res 19(23):6532–6543CrossRefGoogle Scholar
  28. 28.
    Kim S, Min A, Lee KH, Yang Y, Kim TY, Lim JM, Park SJ, Nam HJ, Kim JE, Song SH, Han SW, Oh DY, Kim JH, Kim TY, Hangauer D, Lau JY, Im K, Lee DS, Bang YJ, Im SA (2017) Antitumor effect of KX-01 though inhibiting Src family kinases and mitosis. Cancer Res Treat 49(3):643–655CrossRefGoogle Scholar
  29. 29.
    Ueda S, Mineta T, Nakahara Y, Okamoto H, Shiraishi T, Tabuchi K (2004) Induction of the DNA repair gene O6-methylguanine-DNA methyltransferase by dexamethasone in glioblastomas. J Neurosurg 101(4):659–663CrossRefGoogle Scholar
  30. 30.
    Kanzawa T, Germano IM, Kondo Y, Ito H, Kyo S, Kondo S (2003) Inhibition of telomerase activity in malignant glioma cells correlates with their sensitivity to temozolomide. Br J Cancer 89(5):922–929CrossRefGoogle Scholar
  31. 31.
    Tang SC, de Vries N, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2013) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib. J Pharmacol Exp Ther 346(3):486–494CrossRefGoogle Scholar
  32. 32.
    Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, Elmquist WF, Becher OJ (2016) ABCG2 and ABCB1 limit the efficacy of dasatinib in a PDGF-B-driven brainstem glioma model. Mol Cancer Ther 15(5):819–829CrossRefGoogle Scholar
  33. 33.
    Reyderman L, Statkevich P, Thonoor CM, Patrick J, Batra VK, Wirth M (2004) Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 34(5):487–500CrossRefGoogle Scholar
  34. 34.
    Patel M, McCully C, Godwin K, Balis FM (2003) Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol 61(3):203–207CrossRefGoogle Scholar
  35. 35.
    Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15(22):7092–7098CrossRefGoogle Scholar
  36. 36.
    Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199CrossRefGoogle Scholar
  37. 37.
    Su YB, Sohn S, Krown SE, Livingston PO, Wolchok JD, Quinn C, Williams L, Foster T, Sepkowitz KA, Chapman PB (2004) Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol 22(4):610–616CrossRefGoogle Scholar
  38. 38.
    Tanaka H, Matsushima H, Nishibu A, Clausen BE, Takashima A (2009) Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 69(17):6987–6994CrossRefGoogle Scholar
  39. 39.
    Müller P, Martin K, Theurich S, Schreiner J, Savic S, Terszowski G, Lardinois D, Heinzelmann-Schwarz VA, Schlaak M, Kvasnicka HM, Spagnoli G, Dirnhofer S, Speiser DE, von Bergwelt-Baildon M, Zippelius A (2014) Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res 2(8):741–755CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michael J. Ciesielski
    • 1
  • Yahao Bu
    • 2
  • Stephan A. Munich
    • 1
  • Paola Teegarden
    • 2
  • Michael P. Smolinski
    • 2
  • James L. Clements
    • 2
  • Johnson Y. N. Lau
    • 2
  • David G. Hangauer
    • 2
  • Robert A. Fenstermaker
    • 1
  1. 1.Department of NeurosurgeryRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Athenex, Inc.BuffaloUSA

Personalised recommendations