Journal of Neuro-Oncology

, Volume 141, Issue 3, pp 517–522 | Cite as

5-Aminolevulinic acid fluorescence guided surgery for recurrent high-grade gliomas

  • Muhammad Omar ChohanEmail author
  • Mitchel S. Berger
Topic Review



Fluorescence guided surgery (FGS) with five-aminolevulinic acid (5-ALA) is expected to revolutionize neurosurgical care of patients with high-grade gliomas (HGG). After the recent landmark FDA approval, this optical agent is now available to neurosurgeons in the United States.


This review is designed to highlight the evidence for the use of 5-ALA in recurrent HGG surgery for the neurosurgical community. The manuscript was prepared in accordance with the PRISMA guidelines.


Intra-operatively, a strong fluorescent signal is highly correlated with the presence of cellular tumor in recurrent HGG, giving it a high positive predictive value (PPV). Similar to what is observed in primary HGG surgery, false-negative results can occur if tumor cells do not emit fluorescence. In addition, false-positive fluorescence signals in tissues devoid of tumor cells can be observed more frequently in recurrent HGG compared to the primary setting. However, these areas overwhelmingly contain reactive/regressive tissue, resection of which is unlikely to cause functional deficits. The safety profile of 5-ALA is similarly favorable in primary and recurrent HGG.


5-ALA FGS is a powerful adjunct in the resection of recurrent HGG with a high PPV and favorable safety profile. It is therefore the authors’ opinion to routinely employ this fluorescent agent as a standard of care.


Fluorescence guided surgery (FGS) Five-aminolevulinic acid (5-ALA) Recurrent high grade glioma Recurrent glioblastoma Recurrent anaplastic astrocytoma Neurosurgery 


  1. 1.
    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8. CrossRefGoogle Scholar
  2. 2.
    Oppenlander ME, Wolf AB, Snyder LA, Bina R, Wilson JR, Coons SW, Ashby LS, Brachman D, Nakaji P, Porter RW, Smith KA, Spetzler RF, Sanai N (2014) An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 120:846–853. CrossRefGoogle Scholar
  3. 3.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. CrossRefGoogle Scholar
  4. 4.
    Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS (2016) A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg 124:1300–1309. CrossRefGoogle Scholar
  5. 5.
    Widhalm G, Minchev G, Woehrer A, Preusser M, Kiesel B, Furtner J, Mert A, Di Ieva A, Tomanek B, Prayer D, Marosi C, Hainfellner JA, Knosp E, Wolfsberger S (2012) Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 35:381–391. CrossRefGoogle Scholar
  6. 6.
    Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M, Group ALARGS (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65:1070–1076. (discussion 1076–1077)CrossRefGoogle Scholar
  7. 7.
    Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S, Tanizaki Y, Kondo K, Miyajima Y, Fujii K (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir 47:210–213 (discussion 213–214)CrossRefGoogle Scholar
  8. 8.
    Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, Sabel M (2012) 5-Aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir (Wien) 154:223–228. (discussion 228)CrossRefGoogle Scholar
  9. 9.
    Parvez K, Parvez A, Zadeh G (2014) The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15:11832–11846. CrossRefGoogle Scholar
  10. 10.
    Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384. CrossRefGoogle Scholar
  11. 11.
    Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461. CrossRefGoogle Scholar
  12. 12.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269CrossRefGoogle Scholar
  13. 13.
    Hoover JM, Nwojo M, Puffer R, Mandrekar J, Meyer FB, Parney IF (2013) Surgical outcomes in recurrent glioma clinical article. J Neurosurg 118:1224–1231. CrossRefGoogle Scholar
  14. 14.
    Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A, Raabe A, Beck J (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312. (discussion 312)CrossRefGoogle Scholar
  15. 15.
    Della Puppa A, Ciccarino P, Lombardi G, Rolma G, Cecchin D, Rossetto M (2014) 5-Aminolevulinic acid fluorescence in high grade glioma surgery: surgical outcome, intraoperative findings, and fluorescence patterns. Biomed Res Int 2014:232561. Google Scholar
  16. 16.
    Idoate MA, Valle RD, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582. CrossRefGoogle Scholar
  17. 17.
    Tonn JC, Stummer W (2008) Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 55:20–26Google Scholar
  18. 18.
    Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319. CrossRefGoogle Scholar
  19. 19.
    Hickmann AK, Nadji-Ohl M, Hopf NJ (2015) Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. J Neuro-oncol 122:151–160. CrossRefGoogle Scholar
  20. 20.
    Kamp MA, Felsberg J, Sadat H, Kuzibaev J, Steiger HJ, Rapp M, Reifenberger G, Dibue M, Sabel M (2015) 5-ALA-induced fluorescence behavior of reactive tissue changes following glioblastoma treatment with radiation and chemotherapy. Acta Neurochir (Wien) 157:207–213. (discussion 213–204)CrossRefGoogle Scholar
  21. 21.
    Wachter D, Kallenberg K, Wrede A, Schulz-Schaeffer W, Behm T, Rohde V (2012) Fluorescence-guided operation in recurrent glioblastoma multiforme treated with bevacizumab-fluorescence of the noncontrast enhancing tumor tissue? J Neurol Surg A 73:401–406. Google Scholar
  22. 22.
    Tykocki T, Michalik R, Bonicki W, Nauman P (2012) Fluorescence-guided resection of primary and recurrent malignant gliomas with 5-aminolevulinic acid. Preliminary results. Neurol Neurochir Pol 46:47–51Google Scholar
  23. 23.
    Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H (2008) 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly 138:180–185Google Scholar
  24. 24.
    Panciani PP, Fontanella M, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) 5-Aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach. Neurocirugia (Astur) 23:23–28. CrossRefGoogle Scholar
  25. 25.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013. CrossRefGoogle Scholar
  26. 26.
    Dietze A, Berg K (2005) ALA-induced porphyrin formation and fluorescence in synovitis tissue in-vitro and in vivo studies. Photodiagn Photodyn Ther 2:299–307. CrossRefGoogle Scholar
  27. 27.
    Dietel W, Bolsen K, Dickson E, Fritsch C, Pottier R, Wendenburg R (1996) Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells. J Photochem Photobiol B 33:225–231. CrossRefGoogle Scholar
  28. 28.
    Polo CF, Frisardi AL, Resnik ER, Schoua AEM, Batlle AMD (1988) Factors influencing fluorescence-spectra of free porphyrins. Clin Chem 34:757–760Google Scholar
  29. 29.
    Valle RD, Solis ST, Gastearena MAI, de Eulate RG, Echavarri PD, Mendiroz JA (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neuro-Oncol 102:105–113. CrossRefGoogle Scholar
  30. 30.
    Saito K, Hirai T, Takeshima H, Kadota Y, Yamashita S, Ivanova A, Yokogami K (2017) Genetic factors affecting intraoperative 5-aminolevulinic acid-induced fluorescence of diffuse gliomas. Radiol Oncol 51:142–150. CrossRefGoogle Scholar
  31. 31.
    Roberts DW, Valdes PA, Harris BT, Fontaine KM, Hartov A, Fan X, Ji S, Lollis SS, Pogue BW, Leblond F, Tosteson TD, Wilson BC, Paulsen KD (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114:595–603. CrossRefGoogle Scholar
  32. 32.
    Johansson A, Palte G, Schnell O, Tonn JC, Herms J, Stepp H (2010) 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochem Photobiol 86:1373–1378. CrossRefGoogle Scholar
  33. 33.
    Kim A, Khurana M, Moriyama Y, Wilson BC (2010) Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. J Biomed Opt. Google Scholar
  34. 34.
    Valdes PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan XY, Tosteson TD, Hartov A, Ji SB, Erkmen K, Simmons NE, Paulsen KD, Roberts DW (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17. CrossRefGoogle Scholar
  35. 35.
    Utsuki S, Oka H, Sato S, Suzuki S, Shimizu S, Tanaka S, Fujii K (2006) Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates—technical note. J Neurosurg 104:618–620. CrossRefGoogle Scholar
  36. 36.
    Valdes PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT (2011) Delta-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-oncology 13:846–856. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurological SurgeryUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Neurological SurgeryUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations