Advertisement

Journal of Neuro-Oncology

, Volume 140, Issue 1, pp 135–143 | Cite as

Optimal strategy of gamma knife radiosurgery for craniopharyngiomas

  • Yun-Sik Dho
  • Yong Hwy Kim
  • Jin Wook Kim
  • Chul-Kee Park
  • Hyun-Tai Chung
  • Seung-Ki Kim
  • Sun Ha Paek
  • Kyu-Chang Wang
  • Dong Gyu Kim
Clinical Study

Abstract

Object

To analyze the outcomes of gamma knife radiosurgery (GKS) for craniopharyngiomas and elucidate the optimal strategy.

Methods

Between 1998 and 2016, 35 patients underwent GKS for the treatment of 40 recurrent or residual craniopharyngiomas. Among 40 GKSs, 22 procedures were single-session GKSs and 18 procedures were fractionated GKSs. In cases of single-session GKS, the median marginal dose was 15 Gy (range 10–20 Gy). In cases of fractionated GKS, the median marginal dose was 6 Gy (range 5–7.5 Gy) of three fractions. The radiation dose was calculated to the biologic equivalent dose (BED) using α/β ratios of 10 and 2.

Result

The location of the tumor, the distance between the optic nerve and tumor (> 10 mm), BED 10 (> 35 Gy), and BED2 (> 80 Gy) were statistically significant with overall response rate (P = 0.008, 0.02, 0.03, and 0.002, respectively). There was a statistically significant difference in progression-free survival according to the distance between the optic nerve and tumor (> 10 mm) and the location of tumor (P = 0.03 and 0.03, respectively). Multivariate logistic regression analysis showed the hypothalamus group had an odds ratio of 0.04 compared with the suprasellar group for tumor progression. The group with BED2 > 80 Gy had an odds ratio of 0.049 compared with the group with BED2 < 80 Gy.

Conclusion

A sufficient dose is required for treating craniopharyngiomas using single-session and fractionated GKS. The outcomes of GKS can be predicted according to the location of tumor, the distance between the optic nerve and tumor and BED value.

Keywords

Stereotactic radiosurgery Gamma knife radiosurgery Craniopharyngiomas Fractionation Biologic equivalent dose Location of tumor 

Notes

Acknowledgements

This study is supported by the by a Grant (No.: HI16C-1111-020016 to Kim YH) from the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea and a Grant (No.: NRF-2017R1A2B2008412 to Kim YH) from National Research Foundation of Korea by the Ministry of Science, ICT and Future Planning (MSIP) of Korea.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Supplementary material

11060_2018_2943_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 25 KB)

References

  1. 1.
    Van Effenterre R, Boch A-L (2002) Craniopharyngioma in adults and children: a study of 122 surgical cases. J Neurosurg 97:3–11CrossRefGoogle Scholar
  2. 2.
    Yaşargil MG, Curcic M, Kis M, Siegenthaler G, Teddy PJ, Roth P (1990) Total removal of craniopharyngiomas: approaches and long-term results in 144 patients. J Neurosurg 73:3–11CrossRefGoogle Scholar
  3. 3.
    Mortini P, Losa M, Pozzobon G, Barzaghi R, Riva M, Acerno S, Angius D, Weber G, Chiumello G, Giovanelli M (2011) Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. J Neurosurg 114:1350–1359CrossRefGoogle Scholar
  4. 4.
    Sughrue ME, Yang I, Kane AJ, Fang S, Clark AJ, Aranda D, Barani IJ, Parsa AT (2011) Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma. J Neurooncol 101:463–476CrossRefGoogle Scholar
  5. 5.
    Yang I, Sughrue ME, Rutkowski MJ, Kaur R, Ivan ME, Aranda D, Barani IJ, Parsa AT (2010) Craniopharyngioma: a comparison of tumor control with various treatment strategies. Neurosurg Focus 28:E5CrossRefGoogle Scholar
  6. 6.
    Dho YS, Kim YH, Se YB, Han DH, Kim JH, Park CK, Wang KC, Kim DG (2017) Endoscopic endonasal approach for craniopharyngioma: the importance of the relationship between pituitary stalk and tumor. J Neurosurg 29:1–9Google Scholar
  7. 7.
    Elliott RE, Jane JA Jr, Wisoff JH (2011) Surgical management of craniopharyngiomas in children: meta-analysis and comparison of transcranial and transsphenoidal approaches. Neurosurgery 69:630–643CrossRefGoogle Scholar
  8. 8.
    Habrand J-L, Ganry O, Couanet D, Rouxel V, Levy-Piedbois C, Pierre-Kahn A, Kalifa C (1999) The role of radiation therapy in the management of craniopharyngioma: a 25-year experience and review of the literature. Int J Radiat Oncol Biol Phys 44:255–263CrossRefGoogle Scholar
  9. 9.
    Girkin CA, Comey CH, Lunsford LD, Goodman ML, Kline LB (1997) Radiation optic neuropathy after stereotactic radiosurgery. Ophthalmology 104:1634–1643CrossRefGoogle Scholar
  10. 10.
    Leber KA, Berglöff J, Pendl G (1998) Dose—response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg 88:43–50CrossRefGoogle Scholar
  11. 11.
    Nelson PB, Goodman ML, Flickenger JC, Richardson DW, Robinson AG (1989) Endocrine function in patients with large pituitary tumors treated with operative decompression and radiation therapy. Neurosurgery 24:398–400CrossRefGoogle Scholar
  12. 12.
    Tachibana O, Yamaguchi N, Yamashima T, Yamashita J (1990) Radiation necrosis of the optic chiasm, optic tract, hypothalamus, and upper pons after radiotherapy for pituitary adenoma, detected by gadolinium-enhanced, T1-weighted magnetic resonance imaging: case report. Neurosurgery 27:640–643CrossRefGoogle Scholar
  13. 13.
    Niranjan A, Kano H, Mathieu D, Kondziolka D, Flickinger JC, Lunsford LD (2010) Radiosurgery for craniopharyngioma. Int J Radiat Oncol Biol Phys 78:64–71CrossRefGoogle Scholar
  14. 14.
    Úlfarsson E, Lindquist C, Roberts M, Rähn T, Lindquist M, Thorén M, Lippitz B (2002) Gamma knife radiosurgery for craniopharyngiomas: longterm results in the first Swedish patients. J Neurosurg 97:613–622CrossRefGoogle Scholar
  15. 15.
    Kobayashi T, Kida Y, Mori Y, Hasegawa T (2005) Long-term results of gamma knife surgery for the treatment of craniopharyngioma in 98 consecutive cases. J Neurosurg 103:482–488Google Scholar
  16. 16.
    Gopalan R, Dassoulas K, Rainey J, Sherman JH, Sheehan JP (2008) Evaluation of the role of Gamma Knife surgery in the treatment of craniopharyngiomas. Neurosurg Focus 24(5):E5CrossRefGoogle Scholar
  17. 17.
    Fowler JF (2010) 21 years of biologically effective dose. Br J Radiol 83:554–568CrossRefGoogle Scholar
  18. 18.
    Pemberton LS, Dougal M, Magee B, Gattamaneni HR (2005) Experience of external beam radiotherapy given adjuvantly or at relapse following surgery for craniopharyngioma. Radiother Oncol 77:99–104CrossRefGoogle Scholar
  19. 19.
    Gürkaynak M, Özyar E, Zorlu F, Akyol FH, Atahan IL (1994) Results of radiotherapy in craniopharyngiomas analysed by the linear quadratic model. Acta Oncol 33:941–943CrossRefGoogle Scholar
  20. 20.
    Karavitaki N, Brufani C, Warner J, Adams C, Richards P, Ansorge O, Shine B, Turner H, Wass J (2005) Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol 62:397–409CrossRefGoogle Scholar
  21. 21.
    Gardner PA, Prevedello DM, Kassam AB, Snyderman CH, Carrau RL, Mintz AH (2008) The evolution of the endonasal approach for craniopharyngiomas. J Neurosurg 108(5):1043–1047CrossRefGoogle Scholar
  22. 22.
    Fahlbusch R, Honegger J, Paulus W, Huk W, Buchfelder M (1999) Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg 90:237–250CrossRefGoogle Scholar
  23. 23.
    Chung W-Y, Pan DH-C, Shiau C-Y, Guo W-Y, Wang L-W (2000) Gamma knife radiosurgery for craniopharyngiomas. J Neurosurg 93:47–56Google Scholar
  24. 24.
    Lee C-C, Yang H-C, Chen C-J, Hung Y-C, Wu H-M, Shiau C-Y, Guo W-Y, Pan DH-C, Chung W-Y, Liu K-D (2014) Gamma Knife surgery for craniopharyngioma: report on a 20-year experience. J Neurosurg 121:167–178CrossRefGoogle Scholar
  25. 25.
    Stafford SL, Pollock BE, Leavitt JA, Foote RL, Brown PD, Link MJ, Gorman DA, Schomberg PJ (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55:1177–1181CrossRefGoogle Scholar
  26. 26.
    Ove R, Kelman S, Amin PP, Chin LS (2000) Preservation of visual fields after peri-sellar gamma-knife radiosurgery. Int J Cancer 90:343–350CrossRefGoogle Scholar
  27. 27.
    Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD (2006) Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 59:244–254CrossRefGoogle Scholar
  28. 28.
    Mehta VK, Le Q-T, Chang SD, Chenery S, Adler JR Jr (2002) Image guided stereotactic radiosurgery for lesions in proximity to the anterior visual pathways: a preliminary report. Technol Cancer Res Treat 1:173–179CrossRefGoogle Scholar
  29. 29.
    Paek SH, Downes MB, Bednarz G, Keane WM, Werner-Wasik M, Curran WJ, Andrews DW (2005) Integration of surgery with fractionated stereotactic radiotherapy for treatment of nonfunctioning pituitary macroadenomas. Int J Radiat Oncol Biol Phys 61:795–808CrossRefGoogle Scholar
  30. 30.
    Kim JW, Park HR, Lee JM, Kim JW, Chung H-T, Kim DG, Jung H-W, Paek SH (2016) Fractionated stereotactic gamma knife radiosurgery for large brain metastases: a retrospective, single center study. PLoS ONE 11:e0163304CrossRefGoogle Scholar
  31. 31.
    Park C, Papiez L, Zhang S, Story M, Timmerman RD (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852CrossRefGoogle Scholar
  32. 32.
    Jones B, Dale R, Deehan C, Hopkins K, Morgan D (2001) The role of biologically effective dose (BED) in clinical oncology. Clin Oncol 13:71–81Google Scholar
  33. 33.
    Kuo JS, Chen JC, Yu C, Zelman V, Giannotta SL, Petrovich Z, MacPherson D, Apuzzo ML (2004) Gamma knife radiosurgery for benign cavernous sinus tumors: quantitative analysis of treatment outcomes. Neurosurgery 54:1385–1394CrossRefGoogle Scholar
  34. 34.
    Iwai Y, Yamanaka K, Ishiguro T (2003) Gamma knife radiosurgery for the treatment of cavernous sinus meningiomas. Neurosurgery 52:517–524CrossRefGoogle Scholar
  35. 35.
    Stripp DC, Maity A, Janss AJ, Belasco JB, Tochner ZA, Goldwein JW, Moshang T, Rorke LB, Phillips PC, Sutton LN (2004) Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int J Radiat Oncol Biol Phys 58:714–720CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurosurgery, Seoul National University College of MedicineSeoul National University HospitalSeoulRepublic of Korea
  2. 2.Division of Pediatric NeurosurgerySeoul National University Children’s HospitalSeoulRepublic of Korea

Personalised recommendations