Journal of Neuro-Oncology

, Volume 137, Issue 3, pp 481–492 | Cite as

The CNS penetrating taxane TPI 287 and the AURKA inhibitor alisertib induce synergistic apoptosis in glioblastoma cells

  • Cory T. Zumbar
  • Aisulu Usubalieva
  • Paul D. King
  • Xiaohui Li
  • Caroline S. Mifsud
  • Hailey M. Dalton
  • Muge Sak
  • Sara Urio
  • William M. Bryant
  • Joseph P. McElroy
  • George Farmer
  • Norman L. LehmanEmail author
Laboratory Investigation


Glioblastoma is a highly malignant disease in critical need of expanded treatment options. The AURKA inhibitor alisertib exhibits antiproliferative activity against glioblastoma in vitro and in vivo. Unlike current clinically used taxane drugs, the novel taxane TPI 287 penetrates the CNS. We tested for interactions between three selective AURKA inhibitors and TPI 287 against standard U87 and U1242 cells and primary glioblastoma neurospheres using colony formation assays. Bliss and Chou–Talalay analyses were utilized to statistically test for synergism. Morphological analysis, flow cytometry and annexin V binding were employed to examine cell cycle and apoptotic effects of these drug combinations. TPI 287 not only potentiated the cytotoxicity of the AURKA inhibitors alisertib, MLN8054 and TC-A2317, but was often potently synergistic. Morphologic and biochemical analysis of the combined effects of alisertib and TPI 287 consistently revealed synergistic induction of apoptosis. While each agent alone induces a mitotic block, slippage occurs allowing some tumor cells to avoid apoptosis. Combination treatment greatly attenuated mitotic slippage, committing the majority of cells to apoptosis. Alisertib and TPI 287 demonstrate significant synergism against glioblastoma cells largely attributable to a synergistic effect in inducing apoptosis. These results provide compelling rationale for clinical testing of alisertib and/or other AURKA inhibitors for potential combination use with TPI 287 against glioblastoma and other CNS neoplasms.


TPI 287 Alisertib Apoptosis Synergy Glioblastoma 



Funding for this work was supported by NIH Grant RO1 NS081125 (NLL).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11060_2018_2755_MOESM1_ESM.eps (1.3 mb)
Supplementary material 1 (EPS 1380 KB)
11060_2018_2755_MOESM2_ESM.eps (2 mb)
Supplementary material 2 (EPS 2014 KB)
11060_2018_2755_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 KB)


  1. 1.
    Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108:11–27. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lau D, Magill ST, Aghi MK (2014) Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus 37:E15. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Asteriti IA, Giubettini M, Lavia P, Guarguaglini G (2011) Aurora-A inactivation causes mitotic spindle pole fragmentation by unbalancing microtubule-generated forces. Mol Cancer 10:131 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barr AR, Gergely F (2007) Aurora-A: the maker and breaker of spindle poles. J Cell Sci 120:2987–2996. CrossRefPubMedGoogle Scholar
  5. 5.
    Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, LeRoy PJ, Ray ET, Sells TB, Stringer B, Stroud SG, Vos TJ, Weatherhead GS, Wysong DR, Zhang M, Bolen JB, Claiborne CF (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 104:4106–4111. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huck JJ, Zhang M, McDonald A, Bowman D, Hoar KM, Stringer B, Ecsedy J, Manfredi MG, Hyer ML (2010) MLN8054, an inhibitor of Aurora A kinase, induces senescence in human tumor cells both in vitro and in vivo. Mol Cancer Res 8:373–384. CrossRefPubMedGoogle Scholar
  7. 7.
    Van Brocklyn JR, Wojton J, Meisen WH, Kellough DA, Ecsedy JA, Kaur B, Lehman NL (2014) Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res 74:5364–5370. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hong X, O’Donnell JP, Salazar CR, Van Brocklyn JR, Barnett KD, Pearl DK, deCarvalho AC, Ecsedy JA, Brown SL, Mikkelsen T, Lehman NL (2014) The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemother Pharmacol 73:983–990. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mannino M, Gomez-Roman N, Hochegger H, Chalmers AJ (2014) Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res 13:135–143. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lehman NL, O’Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM, Schultz LR, Williams CJ, Mikkelsen T, Brown SL, Ecsedy JA, Poisson LM (2012) Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 11:489–502. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48:353–374. CrossRefPubMedGoogle Scholar
  12. 12.
    Manfredi JJ, Horwitz SB (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther 25:83–125CrossRefPubMedGoogle Scholar
  13. 13.
    Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90:9552–9556CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 56:816–825PubMedGoogle Scholar
  15. 15.
    Shi J, Mitchison TJ (2017) Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr Relat Cancer 24:T83-T96. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hagiwara H, Sunada Y (2004) Mechanism of taxane neurotoxicity. Breast Cancer 11:82–85CrossRefPubMedGoogle Scholar
  17. 17.
    Brodie SA, Li G, Harvey D, Khuri FR, Vertino PM, Brandes JC (2015) Small molecule inhibition of the CHFR-PARP1 interaction as novel approach to overcome intrinsic taxane resistance in cancer. Oncotarget 6:30773–30786. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Matesanz R, Trigili C, Rodriguez-Salarichs J, Zanardi I, Pera B, Nogales A, Fang WS, Jimenez-Barbero J, Canales A, Barasoain I, Ojima I, Diaz JF (2014) Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorg Med Chem 22:5078–5090. CrossRefPubMedGoogle Scholar
  19. 19.
    Heimans JJ, Vermorken JB, Wolbers JG, Eeltink CM, Meijer OW, Taphoorn MJ, Beijnen JH (1994) Paclitaxel (Taxol) concentrations in brain tumor tissue. Ann Oncol 5:951–953CrossRefPubMedGoogle Scholar
  20. 20.
    Fitzgerald DP, Emerson DL, Qian Y, Anwar T, Liewehr DJ, Steinberg SM, Silberman S, Palmieri D, Steeg PS (2012) TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol Cancer Ther 11:1959–1967. CrossRefPubMedGoogle Scholar
  21. 21.
    Mitchell D, Bergendahl G, Ferguson W, Roberts W, Higgins T, Ashikaga T, DeSarno M, Kaplan J, Kraveka J, Eslin D, Werff AV, Hanna GK, Sholler GL (2016) A phase 1 trial of TPI 287 as a single agent and in combination with temozolomide in patients with refractory or recurrent neuroblastoma or medulloblastoma. Pediatr Blood Cancer 63:39–46. CrossRefPubMedGoogle Scholar
  22. 22.
    Graff JN, Higano CS, Hahn NM, Taylor MH, Zhang B, Zhou X, Venkatakrishnan K, Leonard EJ, Sarantopoulos J (2016) Open-label, multicenter, phase 1 study of alisertib (MLN8237), an aurora A kinase inhibitor, with docetaxel in patients with solid tumors. Cancer 122:2524–2533. CrossRefPubMedGoogle Scholar
  23. 23.
    Millennium Pharmaceuticals, Inc. Phase 2 study of alisertib (MLN8237) in combination with paclitaxel versus placebo in combination with paclitaxel as second line therapy for small cell lung cancer (SCLC). NLM Identifier: NCT02038647. Accessed 3 May 2016
  24. 24.
    Wetmore C, Boyett J, Li S, Lin T, Bendel A, Gajjar A, Orr BA (2015) Alisertib is active as single agent in recurrent atypical teratoid rhabdoid tumors in 4 children. Neuro Oncol 17:882–888. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shi W. Alisertib and fractionated stereotactic radiosurgery in treating patients with recurrent high grade gliomas. National Cancer Institute. NLM Identifier: NCT02186509. Accessed 2 May 2016
  26. 26.
    Cortice Biosciences, Inc. Phase 1/2 dose-escalation study of TPI 287 in combination with bevacizumab followed by randomized study of the maximum tolerated dose of TPI 287 in combination with bevacizumab versus bevacizumab alone in adults with recurrent glioblastoma. NLM Identifier: NCT01933815. Accessed 3 May 2016
  27. 27.
    M.D. Anderson Cancer Center. Phase I/II bevacizumab versus bevacizumab plus TPI 287 for recurrent glioblastoma. NLM Identifier: NCT01582152. Accessed 3 May 2016
  28. 28.
    ASCO Meeting Library (2017) Final results from the dose-escalation stage of a phase 1/2 trial of TPI 287, a brain penetrable microtubule inhibitor, plus bevacizumab in patients with recurrent glioblastoma. Accessed 25 May 2017
  29. 29.
    Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, Stroud SG, Chen W, Shinde V, Huck JJ, Wysong DR, Janowick DA, Hyer ML, Leroy PJ, Gershman RE, Silva MD, Germanos MS, Bolen JB, Claiborne CF, Sells TB (2011) Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 17:7614–7624. CrossRefPubMedGoogle Scholar
  30. 30.
    Ando R, Ikegami H, Sakiyama M, Ooike S, Hayashi M, Fujino Y, Abe D, Nakamura H, Mishina T, Kato H, Iwase Y, Tomozane H, Morioka M (2010) 3-Cyano-6-(5-methyl-3-pyrazoloamino)pyridines: selective Aurora A kinase inhibitors. Bioorg Med Chem Lett 20:4709–4711. CrossRefPubMedGoogle Scholar
  31. 31.
    Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615. CrossRefGoogle Scholar
  32. 32.
    Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385PubMedGoogle Scholar
  33. 33.
    Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3:e00149. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290PubMedGoogle Scholar
  35. 35.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55CrossRefPubMedGoogle Scholar
  36. 36.
    Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278:51786–51795. CrossRefPubMedGoogle Scholar
  37. 37.
    Wysong DR, Chakravarty A, Hoar K, Ecsedy JA (2009) The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle 8:876–888. CrossRefPubMedGoogle Scholar
  38. 38.
    Ding YH, Zhou ZW, Ha CF, Zhang XY, Pan ST, He ZX, Edelman JL, Wang D, Yang YX, Zhang X, Duan W, Yang T, Qiu JX, Zhou SF (2015) Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells. Drug Des Dev Ther 9:425–464. PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lujambio A (2016) To clear, or not to clear (senescent cells)? that is the question. Bioessays 38(Suppl 1): S56–S64. CrossRefPubMedGoogle Scholar
  40. 40.
    Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cory T. Zumbar
    • 1
    • 2
  • Aisulu Usubalieva
    • 3
  • Paul D. King
    • 3
  • Xiaohui Li
    • 3
  • Caroline S. Mifsud
    • 3
  • Hailey M. Dalton
    • 3
  • Muge Sak
    • 1
    • 2
  • Sara Urio
    • 3
  • William M. Bryant
    • 3
  • Joseph P. McElroy
    • 5
  • George Farmer
    • 6
  • Norman L. Lehman
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Pathology and Laboratory MedicineUniversity of LouisvilleLouisvilleUSA
  2. 2.James Graham Brown Cancer CenterLouisvilleUSA
  3. 3.Department of PathologyOhio State UniversityColumbusUSA
  4. 4.Department of NeuroscienceOhio State UniversityColumbusUSA
  5. 5.Department of Biomedical InformaticsOhio State UniversityColumbusUSA
  6. 6.Cortice Biosciences, IncNew YorkUSA

Personalised recommendations