Journal of Neuro-Oncology

, Volume 137, Issue 2, pp 223–231 | Cite as

Localized targeted antiangiogenic drug delivery for glioblastoma

  • Gregory D. Arnone
  • Abhiraj D. Bhimani
  • Tania Aguilar
  • Ankit I. MehtaEmail author
Topic Review


Systemic delivery of antiangiogenic agents has been ineffective in improving the overall survival of patients with both primary and recurrent glioblastoma, in part due to dose-limiting toxicities. With the development of new and efficient localized delivery methods and vehicles, an otherwise lethal dose of antiangiogenic chemotherapy can be used to treat tumors while minimizing systemic side effects. Current in-vitro and in-vivo animal studies have shown promising results that encourage the pursuit towards human clinical trials for localized antiangiogenic treatment in the near future.


Glioblastoma Glioma VEGF Angiogenesis Local drug delivery 


  1. 1.
    Ung TH, Malone H, Canoll P, Bruce JN (2015) Convection-enhanced delivery for glioblastoma: targeted delivery of antitumor therapeutics. CNS Oncol 4:225–234. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Roy S, Lahiri D, Maji T, Biswas J (2015) Recurrent glioblastoma: where we stand. South Asian J Cancer 4:163–173. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE, Herndon JE, Jones LW, Kirkpatrick JP, Friedman AH, Vredenburgh JJ, Bigner DD, Friedman HS (2011) A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw 9:414–427CrossRefGoogle Scholar
  4. 4.
    Wicks RT, Azadi J, Mangraviti A, Zhang I, Hwang L, Joshi A, Bow H, Hutt-Cabezas M, Martin KL, Rudek MA, Zhao M, Brem H, Tyler BM (2015) Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma. Neuro Oncol 17:70–80. CrossRefPubMedGoogle Scholar
  5. 5.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. CrossRefPubMedGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996 CrossRefPubMedGoogle Scholar
  7. 7.
    Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbalý V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202. CrossRefPubMedGoogle Scholar
  8. 8.
    Soda Y, Myskiw C, Rommel A, Verma IM (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 91:439–448. CrossRefGoogle Scholar
  9. 9.
    Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502CrossRefGoogle Scholar
  10. 10.
    Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259. CrossRefPubMedGoogle Scholar
  11. 11.
    Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, Phan P, Ross A, Kesari S, Wen PY (2009) An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 92:149–155. CrossRefPubMedGoogle Scholar
  13. 13.
    Xu T, Chen J, Lu Y, Wolff JE (2010) Effects of bevacizumab plus irinotecan on response and survival in patients with recurrent malignant glioma: a systematic review and survival-gain analysis. BMC Cancer 10:252. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6:465–477. CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou J, Atsina K-B, Himes BT, Strohbehn GW, Saltzman WM (2012) Novel delivery strategies for glioblastoma. Cancer J. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bhujbal SV, de Vos P, Niclou SP (2014) Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 67–68:142–153. CrossRefPubMedGoogle Scholar
  17. 17.
    Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26CrossRefGoogle Scholar
  18. 18.
    Garrastazu Pereira G, Lawson AJ, Buttini F, Sonvico F (2016) Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Deliv 23:2881–2896. CrossRefPubMedGoogle Scholar
  19. 19.
    Perry J, Chambers A, Spithoff K, Laperriere N (2007) Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 14:189–194CrossRefGoogle Scholar
  20. 20.
    Storm PB, Renard VM, Moriarity JL, Tyler B, Wilentz RE, Brem H, Weingart JD (2004) Systemic BCNU enhances the efficacy of local delivery of a topoisomerase I inhibitor against malignant glioma. Cancer Chemother Pharmacol 54:361–367CrossRefGoogle Scholar
  21. 21.
    Vilar G, Tulla-Puche J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394CrossRefGoogle Scholar
  22. 22.
    Benny O, Duvshani-Eshet M, Cargioli T, Bello L, Bikfalvi A, Carroll RS, Machluf M (2005) Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth. Clin Cancer Res 11:768–776PubMedGoogle Scholar
  23. 23.
    Shivinsky A, Bronshtein T, Haber T, Machluf M (2015) The effect of AZD2171-or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices 17:1–15CrossRefGoogle Scholar
  24. 24.
    Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2017) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 126:191–200. CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe M, Boyer JL, Crystal RG (2010) AAVrh. 10-mediated genetic delivery of bevacizumab to the pleura to provide local anti-VEGF to suppress growth of metastatic lung tumors. Gene Therapy 17:1042–1051CrossRefGoogle Scholar
  26. 26.
    Ding I, Sun JZ, Fenton B, Liu WM, Kimsely P, Okunieff P, Min W (2001) Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCa-4 murine mammary carcinomas. Cancer Res 61:526–531PubMedGoogle Scholar
  27. 27.
    Woodworth GF, Dunn GP, Nance EA, Hanes J, Brem H (2014) Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:126. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu HL, Fan CH, Ting CY, Yeh CK (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4:432–444. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ai X, Zhong L, Niu H, He Z (2014) Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J Pharm Sci 9:244–250CrossRefGoogle Scholar
  30. 30.
    Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907. CrossRefPubMedGoogle Scholar
  31. 31.
    Wei KC, Chu PC, Wang HY, Huang CY, Chen PY, Tsai HC, Lu YJ, Lee PY, Tseng IC, Feng LY, Hsu PW, Yen TC, Liu HL (2013) Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS ONE 8:e58995. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425. CrossRefPubMedGoogle Scholar
  33. 33.
    Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N (2013) Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 169:103–111. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bize P, Duran R, Fuchs K, Dormond O, Namur J, Decosterd LA, Jordan O, Doelker E, Denys A (2016) Antitumoral Effect of Sunitinib-eluting Beads in the Rabbit VX2 Tumor Model. Radiology 280:425–435. CrossRefPubMedGoogle Scholar
  35. 35.
    Stefanadis C, Toutouzas K, Tsiamis E, Vavuranakis M, Stefanadi E, Kipshidze N (2008) First-in-man study with bevacizumab-eluting stent: a new approach for the inhibition of atheromatic plaque neovascularisation. EuroIntervention 3:460–464CrossRefGoogle Scholar
  36. 36.
    Read T-A, Sorensen DR, Mahesparan R, Enger P, Timpl R, Olsen BR, Hjelstuen MH, Haraldseth O, Bjerkvig R (2001) Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 19:29–34CrossRefGoogle Scholar
  37. 37.
    Cattaneo MG, Pola S, Francescato P, Chillemi F, Vicentini LM (2003) Human endostatin-derived synthetic peptides possess potent antiangiogenic properties in vitro and in vivo. Exp Cell Res 283:230–236CrossRefGoogle Scholar
  38. 38.
    Pradilla G, Legnani FG, Petrangolini G, Francescato P, Chillemi F, Tyler BM, Gaini SM, Brem H, Olivi A, DiMeco F (2005) Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas. Neurosurgery 57:1032CrossRefGoogle Scholar
  39. 39.
    Benny O, Menon LG, Ariel G, Goren E, Kim S-K, Stewman C, Black PM, Carroll RS, Machluf M (2009) Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth. Clin Cancer Res 15:1222–1231CrossRefGoogle Scholar
  40. 40.
    Tamargo RJ, Leong KW, Brem H (1990) Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. J Neuro Oncol 9:131–138CrossRefGoogle Scholar
  41. 41.
    Schnoor R, Maas SL, Broekman ML (2015) Heparin in malignant glioma: review of preclinical studies and clinical results. J Neuro Oncol 124:151–156CrossRefGoogle Scholar
  42. 42.
    Tamargo RJ, Bok RA, Brem H (1991) Angiogenesis inhibition by minocycline. Can Res 51:672–675Google Scholar
  43. 43.
    Frazier JL, Wang PP, Case D, Tyler BM, Pradilla G, Weingart JD, Brem H (2003) Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma. J Neuro Oncol 64:203–209CrossRefGoogle Scholar
  44. 44.
    Bow H, Hwang LS, Schildhaus N, Xing J, Murray L, Salditch Q, Ye X, Zhang Y, Weingart J, Brem H (2014) Local delivery of angiogenesis-inhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma: laboratory investigation. J Neurosurg 120:662–669CrossRefGoogle Scholar
  45. 45.
    Wang W, Sivakumar W, Torres S, Jhaveri N, Vaikari VP, Gong A, Howard A, Golden EB, Louie SG, Schönthal AH (2015) Effects of convection-enhanced delivery of bevacizumab on survival of glioma-bearing animals. Neurosurg Focus 38:E8CrossRefGoogle Scholar
  46. 46.
    Hicks MJ, Funato K, Wang L, Aronowitz E, Dyke JP, Ballon DJ, Havlicek DF, Frenk EZ, De BP, Chiuchiolo MJ (2015) Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Therapy 22:1–8CrossRefGoogle Scholar
  47. 47.
    Fan C-H, Ting C-Y, Liu H-L, Huang C-Y, Hsieh H-Y, Yen T-C, Wei K-C, Yeh C-K (2013) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34:2142–2155CrossRefGoogle Scholar
  48. 48.
    von Baumgarten L, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S, Herms J, Winkler F (2011) Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res 17:6192–6205. CrossRefGoogle Scholar
  49. 49.
    Cohen MH, Shen YL, Keegan P, Pazdur R (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14:1131–1138. CrossRefPubMedGoogle Scholar
  50. 50.
    Aoki T, Nishikawa R, Sugiyama K, Nonoguchi N, Kawabata N, Mishima K, Adachi J, Kurisu K, Yamasaki F, Tominaga T, Kumabe T, Ueki K, Higuchi F, Yamamoto T, Ishikawa E, Takeshima H, Yamashita S, Arita K, Hirano H, Yamada S, Matsutani M, NPC-08 study group (2014) A multicenter phase I/II study of the BCNU implant (Gliadel(®) Wafer) for Japanese patients with malignant gliomas. Neurol Med Chir (Tokyo) 54: 290–301CrossRefGoogle Scholar
  51. 51.
    Kaiser MG, Parsa AT, Fine RL, Hall JS, Chakrabarti I, Bruce JN (2000) Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model. Neurosurgery 47:1391–1398. (Discussion 1398–1399)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gregory D. Arnone
    • 1
  • Abhiraj D. Bhimani
    • 1
  • Tania Aguilar
    • 1
  • Ankit I. Mehta
    • 1
    Email author
  1. 1.Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations