Advertisement

Established and emerging uses of 5-ALA in the brain: an overview

  • Ricardo Díez Valle
  • Constantinos G. Hadjipanayis
  • Walter Stummer
Topic Review

Abstract

Introduction

5-aminolevulinic acid (5-ALA) was approved by the FDA in June 2017 as an intra-operative optical imaging agent for patients with gliomas (suspected World Health Organization Grades III or IV on preoperative imaging) as an adjunct for the visualization of malignant tissue during surgery. 5-ALA fluorescence-guided surgery (FGS) has been in widespread use in Europe and other continents since 2007.

Methods

We reviewed the data available and summarize the most important known uses of 5-ALA FGS and its potential future applications.

Results/conclusions

The technique has been extensively studied, and more than 300 papers have been published on this topic. Visualization of high-grade glioma tissue is robust and reproducible, and can impact the extent of tumor resection and patient outcomes. 5-ALA FGS for other kind of tumors needs further development.

Graphical abstract

Keywords

5-Aminolevulinic acid Glioma Glioblastoma Fluorescence-guided surgery 

Notes

Funding

This study did not receive any funding.

Compliance with ethical standards

Conflict of interest

Walter Stummer has received speaker and consultant fees by Carl Zeiss, Leica, Medac, NXDC. Constantinos Hadjipanayis is a consultant for NXDC and Synaptive Medical Inc. He will receive potential royalties from NXDC. He has also received speaker fees by Carl Zeiss and Leica. Ricardo Díez Valle has received speaker fees by Medac.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Stummer W, Stepp H, Moller G et al (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140:995–1000CrossRefGoogle Scholar
  2. 2.
    Albert FKMD, Forsting MMD, Sartor KMD et al (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–61Google Scholar
  3. 3.
    Stummer W, Novotny A, Stepp H et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013CrossRefGoogle Scholar
  4. 4.
    Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401.  https://doi.org/10.1016/S1470-2045(06)70665-9 CrossRefGoogle Scholar
  5. 5.
    Zhao S, Wu J, Wang C et al (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS ONE 8:e63682.  https://doi.org/10.1371/journal.pone.0063682 CrossRefGoogle Scholar
  6. 6.
    Eljamel S (2015) 5-ALA fluorescence image guided resection of glioblastoma multiforme: a meta-analysis of the literature. Int J Mol Sci 16:10443–10456.  https://doi.org/10.3390/ijms160510443 CrossRefGoogle Scholar
  7. 7.
    Marko NF, Weil RJ, Schroeder JL et al (2014) Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol 32:774–782.  https://doi.org/10.1200/JCO.2013.51.8886 CrossRefGoogle Scholar
  8. 8.
    Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8.  https://doi.org/10.3171/2011.2.JNS10998 CrossRefGoogle Scholar
  9. 9.
    McGirt MJ, Chaichana KL, Gathinji M et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162.  https://doi.org/10.3171/2008.4.17536 CrossRefGoogle Scholar
  10. 10.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996.  https://doi.org/10.1056/NEJMoa043330 CrossRefGoogle Scholar
  11. 11.
    Stummer W, Reulen HJ, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576.  https://doi.org/10.1227/01.neu.0000317304.31579.17 CrossRefGoogle Scholar
  12. 12.
    Díez Valle R, Slof J, Galván J et al (2014) Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study). Neurologia.  https://doi.org/10.1016/j.nrl.2013.05.004 Google Scholar
  13. 13.
    Jaber M, Wolfer J, Ewelt C et al (2016) The value of 5-aminolevulinic acid in low-grade gliomas and high-grade gliomas lacking glioblastoma imaging features: an analysis based on fluorescence, magnetic resonance imaging, 18F-fluoroethyl tyrosine positron emission tomography, and tumor molecular. Neurosurgery 78:401–411.  https://doi.org/10.1227/NEU.0000000000001020 discussion 411 CrossRefGoogle Scholar
  14. 14.
    Díez Valle R, Tejada Solis S, Idoate Gastearena MA et al (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol.  https://doi.org/10.1007/s11060-010-0296-4 Google Scholar
  15. 15.
    Stummer W, Tonn JC, Goetz C et al (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–320.  https://doi.org/10.1227/NEU.0000000000000267 CrossRefGoogle Scholar
  16. 16.
    Coburger J, Engelke J, Scheuerle A et al (2014) Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 36:E3.  https://doi.org/10.3171/2013.11.FOCUS13463 CrossRefGoogle Scholar
  17. 17.
    Kiesel B, Mischkulnig M, Woehrer A et al (2018) Systematic histopathological analysis of different 5-aminolevulinic acid-induced fluorescence levels in newly diagnosed glioblastomas. J Neurosurg 129:341–353.  https://doi.org/10.3171/2017.4.JNS162991 CrossRefGoogle Scholar
  18. 18.
    Roberts DW, Valdes PA, Harris BT et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114:595–603.  https://doi.org/10.3171/2010.2.JNS091322 CrossRefGoogle Scholar
  19. 19.
    Lau D, Hervey-Jumper SL, Chang S et al (2015) A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg.  https://doi.org/10.3171/2015.5.JNS1577 Google Scholar
  20. 20.
    Yamada S, Muragaki Y, Maruyama T et al (2015) Role of neurochemical navigation with 5-aminolevulinic acid during intraoperative MRI-guided resection of intracranial malignant gliomas. Clin Neurol Neurosurg 130:134–139.  https://doi.org/10.1016/j.clineuro.2015.01.005 CrossRefGoogle Scholar
  21. 21.
    Aldave G, Gonzalez-Huarriz M, Rubio A et al (2018) The aberrant splicing of BAF45d links splicing regulation and transcription in glioblastoma. Neuro Oncology 20:930–941.  https://doi.org/10.1093/neuonc/noy007 CrossRefGoogle Scholar
  22. 22.
    Idoate MA, Díez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology.  https://doi.org/10.1111/j.1440-1789.2011.01202.x Google Scholar
  23. 23.
    Piccirillo SG, Dietz S, Madhu B et al (2012) Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin. Br J Cancer 107:462–468.  https://doi.org/10.1038/bjc.2012.271 CrossRefGoogle Scholar
  24. 24.
    Rampazzo E, Della Puppa A, Frasson C et al (2014) Phenotypic and functional characterization of Glioblastoma cancer stem cells identified trough 5-aminolevulinic acid-assisted surgery. J Neurooncol 116:505–513.  https://doi.org/10.1007/s11060-013-1348-3 CrossRefGoogle Scholar
  25. 25.
    Ross JL, Cooper LAD, Kong J et al (2017) 5-Aminolevulinic acid guided sampling of glioblastoma microenvironments identifies pro-survival signaling at infiltrative margins. Sci Rep 7:15593.  https://doi.org/10.1038/s41598-017-15849-w CrossRefGoogle Scholar
  26. 26.
    Widhalm G, Wolfsberger S, Minchev G et al (2010) 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 116:1545–1552.  https://doi.org/10.1002/cncr.24903 CrossRefGoogle Scholar
  27. 27.
    von Campe G, Moschopulos M, Hefti M (2012) 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence as immediate intraoperative indicator to improve the safety of malignant or high-grade brain tumor diagnosis in frameless stereotactic biopsies. Acta Neurochir (Wien) 154:585–588.  https://doi.org/10.1007/s00701-012-1290-8 discussion 588 CrossRefGoogle Scholar
  28. 28.
    Widhalm G, Minchev G, Woehrer A et al (2012) Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 35:381–391.  https://doi.org/10.1007/s10143-012-0374-5;10.1007/s10143-012-0374-5 discussion 391 CrossRefGoogle Scholar
  29. 29.
    Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469.  https://doi.org/10.1001/jamaoncol.2016.1373 CrossRefGoogle Scholar
  30. 30.
    Kelly PJ, Daumas-Duport C, Kispert DB et al (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865–874.  https://doi.org/10.3171/jns.1987.66.6.0865 CrossRefGoogle Scholar
  31. 31.
    Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988.  https://doi.org/10.3171/2015.5.JNS142087 CrossRefGoogle Scholar
  32. 32.
    Suchorska B, Jansen NL, Linn J et al (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:710–719.  https://doi.org/10.1212/WNL.0000000000001262 CrossRefGoogle Scholar
  33. 33.
    De Bonis P, Anile C, Pompucci A et al (2013) The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg 115:37–43.  https://doi.org/10.1016/j.clineuro.2012.04.005 CrossRefGoogle Scholar
  34. 34.
    Eljamel S, Petersen M, Valentine R et al (2013) Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study. Photodiagnosis Photodyn Ther 10:356–361.  https://doi.org/10.1016/j.pdpdt.2013.03.006 CrossRefGoogle Scholar
  35. 35.
    Schucht P, Knittel S, Slotboom J et al (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312.  https://doi.org/10.1007/s00701-013-1906-7;discussion 312 CrossRefGoogle Scholar
  36. 36.
    Aldave G, Tejada S, Pay E et al (2013) Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery.  https://doi.org/10.1227/NEU.0b013e31828c3974 Google Scholar
  37. 37.
    Tejada S, Díez-Valle R, Aldave G et al (2014) Factors associated with a higher rate of distant failure after primary treatment for glioblastoma. J Neurooncol.  https://doi.org/10.1007/s11060-013-1279-z Google Scholar
  38. 38.
    Schucht P, Murek M, Jilch A et al (2013) Early re-do surgery for glioblastoma is a feasible and safe strategy to achieve complete resection of enhancing tumor. PLoS ONE 8:e79846.  https://doi.org/10.1371/journal.pone.0079846 CrossRefGoogle Scholar
  39. 39.
    Coburger J, Scheuerle A, Pala A et al (2017) Histopathological insights on imaging results of intraoperative magnetic resonance imaging, 5-aminolevulinic acid, and intraoperative ultrasound in glioblastoma surgery. Neurosurgery 81:165–174.  https://doi.org/10.1093/neuros/nyw143 CrossRefGoogle Scholar
  40. 40.
    Suero Molina E, Schipmann S, Stummer W (2017) Maximizing safe resections: the roles of 5-aminolevulinic acid and intraoperative MR imaging in glioma surgery-review of the literature. Neurosurg Rev.  https://doi.org/10.1007/s10143-017-0907-z Google Scholar
  41. 41.
    Cordova JS, Shu H-KG, Liang Z et al (2016) Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol 18:1180–1189.  https://doi.org/10.1093/neuonc/now036 CrossRefGoogle Scholar
  42. 42.
    Bloch O, Han SJ, Cha S et al (2012) Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg 117:1032–1038.  https://doi.org/10.3171/2012.9.JNS12504 CrossRefGoogle Scholar
  43. 43.
    Hickmann A-K, Nadji-Ohl M, Hopf NJ (2015) Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. J Neurooncol 122:151–160.  https://doi.org/10.1007/s11060-014-1694-9 CrossRefGoogle Scholar
  44. 44.
    Della Puppa A, Ciccarino P, Lombardi G et al (2014) 5-Aminolevulinic acid fluorescence in high grade glioma surgery: surgical outcome, intraoperative findings, and fluorescence patterns. Biomed Res Int 2014:232561.  https://doi.org/10.1155/2014/232561 Google Scholar
  45. 45.
    Tykocki T, Michalik R, Bonicki W, Nauman P (2012) Fluorescence-guided resection of primary and recurrent malignant gliomas with 5-aminolevulinic acid. Preliminary results. Neurol Neurochir Pol 46:47–51Google Scholar
  46. 46.
    Archavlis E, Tselis N, Birn G et al (2014) Salvage therapy for recurrent glioblastoma multiforme: a multimodal approach combining fluorescence-guided resurgery, interstitial irradiation, and chemotherapy. Neurol Res 36:1047–1055.  https://doi.org/10.1179/1743132814Y.0000000398 CrossRefGoogle Scholar
  47. 47.
    Ringel F, Pape H, Sabel M et al (2016) Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro Oncol 18:96–104.  https://doi.org/10.1093/neuonc/nov145 CrossRefGoogle Scholar
  48. 48.
    Nabavi A, Thurm H, Zountsas B et al (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65:1070–1077.  https://doi.org/10.1227/01.NEU.0000360128.03597.C7 CrossRefGoogle Scholar
  49. 49.
    Kamp MA, Felsberg J, Sadat H et al (2015) 5-ALA-induced fluorescence behavior of reactive tissue changes following glioblastoma treatment with radiation and chemotherapy. Acta Neurochir (Wien) 157:204–207.  https://doi.org/10.1007/s00701-014-2313-4 Google Scholar
  50. 50.
    Utsuki S, Oka H, Sato S et al (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir (Tokyo) 47:210–214CrossRefGoogle Scholar
  51. 51.
    Kamp MA, Krause Molle Z, Munoz-Bendix C et al (2018) Various shades of red-a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery. Neurosurg Rev 41:3–18.  https://doi.org/10.1007/s10143-016-0745-4 CrossRefGoogle Scholar
  52. 52.
    Coluccia D, Fandino J, Fujioka M et al (2010) Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas. Acta Neurochir (Wien) 152:1711–1719.  https://doi.org/10.1007/s00701-010-0708-4 CrossRefGoogle Scholar
  53. 53.
    Millesi M, Kiesel B, Mischkulnig M et al (2016) Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419.  https://doi.org/10.3171/2015.12.JNS151513 CrossRefGoogle Scholar
  54. 54.
    Valdes PA, Bekelis K, Harris BT et al (2014) 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo. Neurosurgery 10(Suppl 1):73–74.  https://doi.org/10.1227/NEU.0000000000000117 Google Scholar
  55. 55.
    Kajimoto Y, Kuroiwa T, Miyatake S, et al (2007) Use of 5-aminolevulinic acid in fluorescence-guided resection of meningioma with high risk of recurrence. Case report. J Neurosurg 106:1070–1074.  https://doi.org/10.3171/jns.2007.106.6.1070 CrossRefGoogle Scholar
  56. 56.
    Cornelius JF, Slotty PJ, Kamp MA et al (2014) Impact of 5-aminolevulinic acid fluorescence-guided surgery on the extent of resection of meningiomas—with special regard to high-grade tumors. Photodiagnosis Photodyn Ther 11:481–490.  https://doi.org/10.1016/j.pdpdt.2014.07.008 CrossRefGoogle Scholar
  57. 57.
    Morofuji Y, Matsuo T, Hayashi Y et al (2008) Usefulness of intraoperative photodynamic diagnosis using 5-aminolevulinic acid for meningiomas with cranial invasion: technical case report. Neurosurgery 62:102–104.  https://doi.org/10.1227/01.neu.0000317378.22820.46 Google Scholar
  58. 58.
    Della Puppa A, Rustemi O, Gioffre G et al (2014) Predictive value of intraoperative 5-aminolevulinic acid-induced fluorescence for detecting bone invasion in meningioma surgery. J Neurosurg 120:840–845.  https://doi.org/10.3171/2013.12.JNS131642 CrossRefGoogle Scholar
  59. 59.
    Wilbers E, Hargus G, Wolfer J, Stummer W (2014) Usefulness of 5-ALA (Gliolan(R))-derived PPX fluorescence for demonstrating the extent of infiltration in atypical meningiomas. Acta Neurochir (Wien) 156:1853–1854CrossRefGoogle Scholar
  60. 60.
    Scheichel F, Ungersboeck K, Kitzwoegerer M, Marhold F (2017) Fluorescence-guided resection of extracranial soft tissue tumour infiltration in atypical meningioma. Acta Neurochir (Wien) 159:1027–1031.  https://doi.org/10.1007/s00701-017-3166-4 CrossRefGoogle Scholar
  61. 61.
    Valdes PA, Jacobs V, Harris BT et al (2015) Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg 123:771–780.  https://doi.org/10.3171/2014.12.JNS14391 CrossRefGoogle Scholar
  62. 62.
    Wei L, Roberts DW, Sanai N, Liu JTC (2018) Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol.  https://doi.org/10.1007/s11060-018-03077-9 Google Scholar
  63. 63.
    Evers G, Kamp M, Warneke N et al (2017) 5-Aminolaevulinic acid-induced fluorescence in primary central nervous system lymphoma. World Neurosurg 98:375–380.  https://doi.org/10.1016/j.wneu.2016.11.011 CrossRefGoogle Scholar
  64. 64.
    Yamamoto J, Kitagawa T, Akiba D, Nishizawa S (2015) 5-Aminolevulinic acid-induced fluorescence in cerebellar primary central nervous system lymphoma: a case report and literature review. Turk Neurosurg 25:796–800.  https://doi.org/10.5137/1019-5149.JTN.10594-14.1 Google Scholar
  65. 65.
    Yamamoto T, Ishikawa E, Miki S et al (2015) Photodynamic diagnosis using 5-aminolevulinic acid in 41 biopsies for primary central nervous system lymphoma. Photochem Photobiol 91:1452–1457.  https://doi.org/10.1111/php.12510 CrossRefGoogle Scholar
  66. 66.
    Takeda J, Nonaka M, Li Y et al (2017) 5-ALA fluorescence-guided endoscopic surgery for mixed germ cell tumors. J Neurooncol 134:119–124.  https://doi.org/10.1007/s11060-017-2494-9 CrossRefGoogle Scholar
  67. 67.
    Kamp MA, Munoz-Bendix C, Mijderwijk HJ, Turowski B, Dibué-Adjei M, von Saß C, Cornelius JF, Steiger HJ, Rapp M, Sabel M (2018) Is 5-ALA fluorescence of cerebral metastases a prognostic factor for local recurrence and overall survival? J Neuroncol.  https://doi.org/10.1007/s11060-018-03066-y Google Scholar
  68. 68.
    Utsuki S, Oka H, Kijima C et al (2011) Utility of intraoperative fluorescent diagnosis of residual hemangioblastoma using 5-aminolevulinic acid. Neurol India 59:612–615.  https://doi.org/10.4103/0028-3886.84349 CrossRefGoogle Scholar
  69. 69.
    Utsuki S, Oka H, Sato K et al (2010) Fluorescence diagnosis of tumor cells in hemangioblastoma cysts with 5-aminolevulinic acid. J Neurosurg 112:130–132.  https://doi.org/10.3171/2009.5.JNS08442 CrossRefGoogle Scholar
  70. 70.
    Bernal Garcia LM, Cabezudo Artero JM, Marcelo Zamorano MB, Gilete Tejero I (2015) Fluorescence-guided resection with 5-aminolevulinic Acid of subependymomas of the fourth ventricle: report of 2 cases: technical case report. Neurosurgery 11(Suppl 2):E364–E371.  https://doi.org/10.1227/NEU.0000000000000682 discussion E371 CrossRefGoogle Scholar
  71. 71.
    Stummer W, Rodrigues F, Schucht P et al (2014) Predicting the “usefulness” of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey. Acta Neurochir (Wien) 156:2315–2324.  https://doi.org/10.1007/s00701-014-2234-2 CrossRefGoogle Scholar
  72. 72.
    Inoue T, Kanamori M, Sonoda Y et al (2008) Glioblastoma multiforme developing separately from the initial lesion 9 years after successful treatment for gliomatosis cerebri: a case report. Neurol Surg 36:709–715Google Scholar
  73. 73.
    Beck TJ, Kreth FW, Beyer W et al (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393.  https://doi.org/10.1002/lsm.20507 CrossRefGoogle Scholar
  74. 74.
    Stummer W, Beck T, Beyer W et al (2008) Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 87:103–109.  https://doi.org/10.1007/s11060-007-9497-x CrossRefGoogle Scholar
  75. 75.
    Etminan N, Peters C, Ficnar J et al (2011) Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid-based photodynamic treatment. Laboratory investigation. J Neurosurg 115:281–288.  https://doi.org/10.3171/2011.3.JNS10434 CrossRefGoogle Scholar
  76. 76.
    Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545.  https://doi.org/10.1038/nrc1894 CrossRefGoogle Scholar
  77. 77.
    Dupont C, Vermandel M, Leroy H-A et al (2018) Intraoperative photodynamic therapy for glioblastomas: study protocol for a Phase I Clinical Trial. Neurosurgery.  https://doi.org/10.1093/neuros/nyy324 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity ClinicNavarraSpain
  2. 2.Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of NeurosurgeryUniversitätsklinikum MünsterMünsterGermany

Personalised recommendations