Advertisement

Contrast enhancing spots as a new pattern of late onset pseudoprogression in glioma patients

  • Martin VossEmail author
  • Kea Franz
  • Joachim P. Steinbach
  • Emmanouil Fokas
  • Marie-Thérèse Forster
  • Katharina Filipski
  • Elke Hattingen
  • Marlies Wagner
  • Stella Breuer
Clinical Study

Abstract

Introduction

Magnet resonance imaging (MRI) of gliomas is assessed by Response Assessment in Neuro-Oncology Criteria (RANO), which define new contrast-enhancing lesions as a sign for tumor recurrence. Pseudoprogression after radiotherapy may mimic tumor progression in MRI but is usually limited to the first months after irradiation. We noted a late onset pattern of new contrast-enhancing spots (NCES) appearing years after radiotherapy.

Methods

We prospectively collected 23 glioma patients with 26 NCES (three patients had two separate NCES events) between 2014 and 2016 in our weekly tumor board without further selection by diagnosis, molecular markers or pretreatment.

Results

Retrospective analysis revealed a homogeneous collective of young patients (median age of 49 years at NCES) with mainly IDH-mutated glioma (61%). Initial histology showed 26% glioblastoma, 52% grade III and 22% grade II glioma. NCES occurred at late follow-up with a median of 52 months after tumor diagnosis and 30 months after the last radiotherapy. The majority of NCES regressed spontaneously within a median of 10 months (n = 11) or remained stable without further therapy with a median follow-up of 26 months (n = 7). Only 4 NCES developed MRI morphologically into tumor recurrence. Two NCES were resected without any histopathological proof of tumor recurrence, and in 2 other cases NCES were defined as ischemic stroke or radionecrosis.

Conclusion

We hypothesize that the late onset phenomenon of NCES predominantly represents a form of radiation-induced vasculopathy that is different from early pseudoprogression and should be considered especially in younger patients with IDH-mutated glioma before initiation of new therapy.

Keywords

Pseudoprogression Radionecrosis Glioma Brain tumor Isocitrat dehydrogenase (IDH) 

Notes

Acknowledgements

The Senckenberg Institute of Neurooncology is supported by the Senckenberg Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study has been accepted by the local ethics committee (SNO_SNO_01–08).

Supplementary material

11060_2018_3076_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 KB)

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefGoogle Scholar
  2. 2.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972.  https://doi.org/10.1200/JCO.2009.26.3541 CrossRefGoogle Scholar
  3. 3.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996  https://doi.org/10.1056/NEJMoa043330 CrossRefGoogle Scholar
  4. 4.
    Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197.  https://doi.org/10.1200/JCO.2007.14.8163 CrossRefGoogle Scholar
  5. 5.
    Gahramanov S, Varallyay C, Tyson RM, Lacy C, Fu R, Netto JP, Nasseri M, White T, Woltjer RL, Gultekin SH, Neuwelt EA (2014) Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival. CNS Oncol 3:389–400.  https://doi.org/10.2217/cns.14.42 CrossRefGoogle Scholar
  6. 6.
    Ranjan S, Quezado M, Garren N, Boris L, Siegel C, Lopes Abath Neto O, Theeler BJ, Park DM, Nduom E, Zaghloul KA, Gilbert MR, Wu J (2018) Clinical decision making in the era of immunotherapy for high grade-glioma: report of four cases. BMC Cancer 18:239.  https://doi.org/10.1186/s12885-018-4131-1 CrossRefGoogle Scholar
  7. 7.
    Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH (2012) Radiation necrosis following treatment of high grade glioma–a review of the literature and current understanding. Acta Neurochir (Wien) 154:191–201.  https://doi.org/10.1007/s00701-011-1228-6 (Discussion 201) CrossRefGoogle Scholar
  8. 8.
    Babu R, Huang PP, Epstein F, Budzilovich GN (1993) Late radiation necrosis of the brain: case report. J Neurooncol 17:37–42CrossRefGoogle Scholar
  9. 9.
    Blasel S, Franz K, Mittelbronn M, Morawe G, Jurcoane A, Pellikan S, Zanella F, Hattingen E (2010) The striate sign: peritumoural perfusion pattern of infiltrative primary and recurrent gliomas. Neurosurg Rev 33:193–203.  https://doi.org/10.1007/s10143-010-0248-7 (Discussion 203–194) CrossRefGoogle Scholar
  10. 10.
    Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867Google Scholar
  11. 11.
    Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384.  https://doi.org/10.1148/radiology.217.2.r00nv36377 CrossRefGoogle Scholar
  12. 12.
    Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS (2003) Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 63:5950–5956Google Scholar
  13. 13.
    van den Ameele J, Sieben A, Van den Broecke C, Boterberg T, Defreyne L, Achten E, Lammens M, Hemelsoet D (2012) Late-onset post-irradiation vasculopathy of the posterior cerebral vasculature. Acta Neurol Belg 112:101–104.  https://doi.org/10.1007/s13760-012-0014-4 CrossRefGoogle Scholar
  14. 14.
    Miura M, Nakajima M, Fujimoto A, Kaku Y, Kawano T, Watanabe M, Kuratsu JI, Ando Y (2017) High prevalence of small vessel disease long after cranial irradiation. J Clin Neurosci 46:129–135.  https://doi.org/10.1016/j.jocn.2017.09.008 CrossRefGoogle Scholar
  15. 15.
    Yoshii Y (2008) Pathological review of late cerebral radionecrosis. Brain Tumor Pathol 25:51–58.  https://doi.org/10.1007/s10014-008-0233-9 CrossRefGoogle Scholar
  16. 16.
    Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB (1994) Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology 193:629–636.  https://doi.org/10.1148/radiology.193.3.7972799 CrossRefGoogle Scholar
  17. 17.
    Pozzati E, Giangaspero F, Marliani F, Acciarri N (1996) Occult cerebrovascular malformations after irradiation. Neurosurgery 39:677–682 (Discussion 682–674) CrossRefGoogle Scholar
  18. 18.
    Miyatake S, Nonoguchi N, Furuse M, Yoritsune E, Miyata T, Kawabata S, Kuroiwa T (2015) Pathophysiology, Diagnosis, and Treatment of Radiation Necrosis in the Brain. Neurol Med Chir (Tokyo) 55(Suppl 1):50–59CrossRefGoogle Scholar
  19. 19.
    Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR, Jackson EF (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495.  https://doi.org/10.1016/j.ijrobp.2009.12.061 CrossRefGoogle Scholar
  20. 20.
    Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG, Pacione D, Golfinos JG, Kumthekar P, Ghamsari F, Chen L, Lein P, Chetkovich DM, Snuderl M, Horbinski C (2017) Mutant IDH1 and seizures in patients with glioma. Neurology 88:1805–1813.  https://doi.org/10.1212/WNL.0000000000003911 CrossRefGoogle Scholar
  21. 21.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30.  https://doi.org/10.1016/j.ccr.2010.12.014 CrossRefGoogle Scholar
  22. 22.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265.  https://doi.org/10.1126/science.1170944 CrossRefGoogle Scholar
  23. 23.
    Li H, Li J, Cheng G, Zhang J, Li X (2016) IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 151:31–36.  https://doi.org/10.1016/j.clineuro.2016.10.004 CrossRefGoogle Scholar
  24. 24.
    Lin AL, White M, Miller-Thomas MM, Fulton RS, Tsien CI, Rich KM, Schmidt RE, Tran DD, Dahiya S (2016) Molecular and histologic characteristics of pseudoprogression in diffuse gliomas. J Neurooncol 130:529–533.  https://doi.org/10.1007/s11060-016-2247-1 CrossRefGoogle Scholar
  25. 25.
    Juratli TA, Engellandt K, Lautenschlaeger T, Geiger KD, von Kummer R, Cerhova J, Chakravarti A, Krex D, Schackert G (2013) Is there pseudoprogression in secondary glioblastomas? Int J Radiat Oncol Biol Phys 87:1094–1099.  https://doi.org/10.1016/j.ijrobp.2013.09.036 CrossRefGoogle Scholar
  26. 26.
    Lin AL, Liu J, Evans J, Leuthardt EC, Rich KM, Dacey RG, Dowling JL, Kim AH, Zipfel GJ, Grubb RL, Huang J, Robinson CG, Simpson JR, Linette GP, Chicoine MR, Tran DD (2014) Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro Oncol 16:123–130.  https://doi.org/10.1093/neuonc/not142 CrossRefGoogle Scholar
  27. 27.
    Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, Coons SW, Nakaji P, Yeh RF, Debbins J, Heiserman JE (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558.  https://doi.org/10.3174/ajnr.A1377 CrossRefGoogle Scholar
  28. 28.
    Kong DS, Kim ST, Kim EH, Lim DH, Kim WS, Suh YL, Lee JI, Park K, Kim JH, Nam DH (2011) Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 32:382–387.  https://doi.org/10.3174/ajnr.A2286 CrossRefGoogle Scholar
  29. 29.
    Blasel S, Zagorcic A, Jurcoane A, Bahr O, Wagner M, Harter PN, Hattingen E (2016) Perfusion MRI in the Evaluation of Suspected Glioblastoma Recurrence. J Neuroimaging 26:116–123.  https://doi.org/10.1111/jon.12247 CrossRefGoogle Scholar
  30. 30.
    Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM (2014) Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T. Neuroradiology 56:91–96.  https://doi.org/10.1007/s00234-013-1297-8 CrossRefGoogle Scholar
  31. 31.
    Lupo JM, Chuang CF, Chang SM, Barani IJ, Jimenez B, Hess CP, Nelson SJ (2012) 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 82:e493–e500.  https://doi.org/10.1016/j.ijrobp.2011.05.046 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Martin Voss
    • 1
    Email author
  • Kea Franz
    • 2
  • Joachim P. Steinbach
    • 1
  • Emmanouil Fokas
    • 3
  • Marie-Thérèse Forster
    • 2
  • Katharina Filipski
    • 4
  • Elke Hattingen
    • 5
  • Marlies Wagner
    • 5
  • Stella Breuer
    • 5
  1. 1.Dr. Senckenberg Institute of NeurooncologyUniversity Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
  2. 2.Departement of NeurosurgeryUniversity Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
  3. 3.Department of Radiotherapy and OncologyUniversity Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
  4. 4.Institut of Neurology (Edinger-Institute)University Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
  5. 5.Departement of NeuroradiologyUniversity Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany

Personalised recommendations