Impact of ANXA5 polymorphisms on glioma risk and patient prognosis

  • Xiaoye Guo
  • Jinning Song
  • Junjie Zhao
  • Bo Wang
  • Zhongbo Yang
  • Peng Sun
  • Mingjun Hu
Laboratory Investigation



Glioma, the most common primary malignant brain tumor, is highly malignant with a poor prognosis. We aimed to clarify the relevance of ANXA5 polymorphisms to glioma risk and prognosis among the Chinese Han population.


Six single-nucleotide polymorphisms (SNPs) of ANXA5 were genotyped by Agena MassARRAY in 593 glioma patients and 589 healthy controls. Logistic regression model was used to calculate odds ratios (OR) and 95% confidence intervals (CI). The association between polymorphisms and survival were evaluated using the log-rank test, Kaplan–Meier analysis and Cox regression model.


We found that rs117677079 polymorphism was strongly associated with an increased risk of glioma (OR 1.64, p = 0.003) and a worse prognosis for glioma, especially in high-grade glioma (HR 1.76, p = 0.005). Whereas, rs145619195 CT genotype might weaken the susceptibility (OR 0.63, p = 0.024) and prognosis (HR 0.20, p = 0.025) of glioma. Haplotype analysis showed that haplotype ″GACCG″ in the block (rs41278075, rs2306420, rs117677079, rs2306415 and rs1131239) significantly decreased the susceptibility of glioma (OR 0.61, p = 0.003). Furthermore, we also found that age, extent of resection and chemotherapy were key prognostic factors in glioma patients.


This study firstly provided evidence for the impact of ANXA5 polymorphism on the susceptibility and prognosis of glioma, suggesting ANXA5 variants might have potential roles in the etiology of glioma.


Glioma ANXA5 variants Susceptibility Prognosis 



We are grateful to the individuals who participated in this study. We also thank the clinicians and hospital staff who contributed to the sample and data collection for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Amirian ES, Armstrong GN, Zhou R et al (2016) The Glioma International Case-Control Study: a report from the genetic epidemiology of Glioma International Consortium. Am J Epidemiol 183(2):85–91Google Scholar
  2. 2.
    Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132CrossRefGoogle Scholar
  3. 3.
    Ricard D, Idbaih A, Ducray F et al (2012) Primary brain tumours in adults. Lancet 379(9830):1984–1996CrossRefGoogle Scholar
  4. 4.
    Bondy ML, Scheurer ME, Malmer B et al (2010) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113(S7):1953–1968CrossRefGoogle Scholar
  5. 5.
    Chen Y, Wu Y, Huang X et al (2015) Leukocyte telomere length: a novel biomarker to predict the prognosis of glioma patients. J Cancer Res Clin Oncol 141(10):1739–1747CrossRefGoogle Scholar
  6. 6.
    Jin T, Wang Y, Li G et al (2015) Analysis of difference of association between polymorphisms in the XRCC5, RPA3 and RTEL1 genes and glioma, astrocytoma and glioblastoma. Am J Cancer Res 5(7):2294–2300Google Scholar
  7. 7.
    Bo JT, Shuli D, Kai ZX et al (2016) Polymorphism in the IL4R gene and clinical features are associated with glioma prognosis: analyses of case-cohort studies. Medicine 95(31):e4231CrossRefGoogle Scholar
  8. 8.
    Li G, Jin T, Liang H et al (2013) RTEL1 tagging SNPs and haplotypes were associated with glioma development. Diagn Pathol 8(1):83Google Scholar
  9. 9.
    Mistry AM, Vnencak-Jones CL, Mobley BC (2018) Clinical prognostic value of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in glioblastoma. J Neuro-Oncol 138(2):307–313CrossRefGoogle Scholar
  10. 10.
    Bouter A, Carmeille R, Gounou C et al (2015) Review: annexin-A5 and cell membrane repair. Placenta 36:S43–S49CrossRefGoogle Scholar
  11. 11.
    Arnold P, Lu X, Amirahmadi F et al (2014) Recombinant human annexin A5 inhibits proinflammatory response and improves cardiac function and survival in mice with endotoxemia. Crit Care Med 42(1):e32–e41CrossRefGoogle Scholar
  12. 12.
    Krey JF, Drummond M, Foster S et al (2016) Annexin A5 is the most abundant membrane-associated protein in stereocilia but is dispensable for hair-bundle development and function. Sci Rep 6:27221CrossRefGoogle Scholar
  13. 13.
    Li X, Ma W, Wang X, Ci Y, Zhao Y (2018) Annexin A5 overexpression might suppress proliferation and metastasis of human uterine cervical carcinoma cells. Cancer Biomark 23(1):23–32CrossRefGoogle Scholar
  14. 14.
    Wehder L, Arndt S, Murzik U et al (2009) Annexin A5 is involved in migration and invasion of oral carcinoma. Cell Cycle (Georgetown Tex) 8(10):1552–1558CrossRefGoogle Scholar
  15. 15.
    Lu B, Zhao J, Xu L et al (2012) Identification of molecular target proteins in berberine-treated cervix adenocarcinoma HeLa cells by proteomic and bioinformatic analyses. Phytother Res Ptr 26(5):646–656CrossRefGoogle Scholar
  16. 16.
    Rajcevic U, Petersen K, Knol JC et al (2009) iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteom 8(11):2595–2612CrossRefGoogle Scholar
  17. 17.
    Peng B, Guo C, Guan H, Liu S, Sun MZ (2014) Annexin A5 as a potential marker in tumors. Clin Chim Acta 427:42–48CrossRefGoogle Scholar
  18. 18.
    Dubois T, Mira JP, Feliers D et al (1998) Annexin V inhibits protein kinase C activity via a mechanism of phospholipid sequestration. Biochem J 330(Pt 3):(3):1277–1282CrossRefGoogle Scholar
  19. 19.
    Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334(6184):661–665CrossRefGoogle Scholar
  20. 20.
    Shin DW, Kwon YJ, Ye DJ et al (2017) Auranofin suppresses plasminogen activator inhibitor-2 expression through Annexin A5 induction in human prostate cancer cells. Biomol Ther 25(2):177–185CrossRefGoogle Scholar
  21. 21.
    Ding XM, Li JX, Wang K et al (2017) Effects of silencing annexin A5 on proliferation and invasion of human cholangiocarcinoma cell line. Eur Rev Med Pharmacol Sci 21(7):1477–1488Google Scholar
  22. 22.
    Wu L, Yang L, Xiong Y et al (2014) Annexin A5 promotes invasion and chemoresistance to temozolomide in glioblastoma multiforme cells. Tumour Biol 35(12):12327–12337CrossRefGoogle Scholar
  23. 23.
    Nasef A, Ibrahim M, Riad N, Mousa S (2014) Plasma annexin A5, anti-annexin A5 antibodies and annexin A5 polymorphism in Egyptian female patients with systemic lupus erythematosus and antiphospholipid syndrome. Clin Lab 60(1):133–137Google Scholar
  24. 24.
    Hiddink L, Dallinga-Thie GM, Hovingh GK et al (2015) Annexin A5 haplotypes in familial hypercholesterolemia: lack of association with carotid intima-media thickness and cardiovascular disease risk. Atherosclerosis 238(2):195–200CrossRefGoogle Scholar
  25. 25.
    Arroyo-Berdugo Y, Alonso S, Ribas G et al (2014) Involvement of ANXA5 and ILKAP in susceptibility to malignant melanoma. PLoS ONE 9(4):e95522CrossRefGoogle Scholar
  26. 26.
    Zhao H, Yang W, Qiu R et al (2012) An intronic variant associated with systemic lupus erythematosus changes the binding affinity of Yinyang1 to downregulate WDFY4. Genes Immun 13(7):536–542CrossRefGoogle Scholar
  27. 27.
    Seo S, Takayama K, Uno K et al (2013) Functional analysis of deep intronic SNP rs13438494 in intron 24 of PCLO gene. PLoS ONE 8(10):e76960CrossRefGoogle Scholar
  28. 28.
    Wang D, Sadee W (2016) CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet Genom 26(1):40–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Neurosurgery, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  3. 3.Xi’an Chest HospitalXi’anChina

Personalised recommendations