Advertisement

Journal of Neuro-Oncology

, Volume 140, Issue 3, pp 727–737 | Cite as

Repeatability of dynamic contrast enhanced vp parameter in healthy subjects and patients with brain tumors

  • Moran Artzi
  • Gilad Liberman
  • Deborah T. Blumenthal
  • Felix Bokstein
  • Orna Aizenstein
  • Dafna Ben Bashat
Clinical Study

Abstract

Purpose

To study the repeatability of plasma volume (vp) extracted from dynamic-contrast-enhanced (DCE) MRI in order to define threshold values for significant longitudinal changes, and to assess changes in patients with high-grade-glioma (HGG).

Methods

Twenty eight healthy subjects, of which eleven scanned twice, were used to assess the repeatability of vp within the normal-appearing brain tissue and to define threshold values for significant changes based on least-detected-differences (LDD) of mean vp values and histogram comparisons using earth-mover’s-distance (EMD). Sixteen patients with HGG were scanned longitudinally with eight patients scanned before and following bevacizumab therapy. Longitudinal changes were assessed based on defined threshold values in comparison to RANO criteria.

Results

The threshold values for significant changes were: LDD = 0.0024 (ml/100 ml, 21%) for mean vp and EMD = 4.14. In patients, in 20/24 comparisons, no significant longitudinal changes were detected for vp within the normal-appearing brain tissue. Concurring results were obtained between changes in lesion volume (RANO criteria) and LDD or EMD values in cases diagnosed with progressive-disease, yet in about 50% of cases diagnosed with partial-response preliminary results demonstrated significant increase in vp despite significant reductions in lesion volume. In two patients, these changes preceded progression detected at follow-up scans. In general, a good concordance was obtained between LDD and EMD.

Conclusion

This study shows high repeatability of vp and provides threshold values for significant changes in longitudinal assessment of patients with brain tumors. Preliminary results suggest the use of vp-DCE parameter to improve assessment of therapy response in patients with high-grade-glioma.

Keywords

DCE-MRI Least detected changes (LDD) Earth mover’s distance (EMD) Plasma volume (vpHigh grade brain tumors 

References

  1. 1.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280CrossRefGoogle Scholar
  2. 2.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972.  https://doi.org/10.1200/JCO.2009.26.3541 CrossRefGoogle Scholar
  3. 3.
    Chang SM, Wen PY, Vogelbaum MA, Macdonald DR, van den Bent MJ (2015) Response assessment in neuro-oncology (RANO): more than imaging criteria for malignant glioma. Neuro-Oncol Pract 2:205–209Google Scholar
  4. 4.
    Artzi M, Liberman G, Nadav G, Vitinshtein F, Blumenthal DT, Bokstein F, Aizenstein O, Ben Bashat D (2015) Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI. Neuroradiology 57:671–678CrossRefGoogle Scholar
  5. 5.
    O’Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195.  https://doi.org/10.1038/sj.bjc.6603515 CrossRefGoogle Scholar
  6. 6.
    Jain R (2013) Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed 26:1042–1049CrossRefGoogle Scholar
  7. 7.
    Artzi M, Liberman G, Nadav G, Blumenthal DT, Bokstein F, Aizenstein O, Ben Bashat D (2016) Differentiation between treatment-related changes and progressive disease in patients with high grade brain tumors using support vector machine classification based on DCE MRI. J Neuro-oncol 127:1–10CrossRefGoogle Scholar
  8. 8.
    Bisdas S, Naegele T, Ritz R, Dimostheni A, Pfannenberg C, Reimold M, San Koh T, Ernemann U (2011) Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 18:575–583CrossRefGoogle Scholar
  9. 9.
    Piludu F, Marzi S, Pace A, Villani V, Fabi A, Carapella CM, Terrenato I, Antenucci A, Vidiri A (2015) Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology 57:1269–1280CrossRefGoogle Scholar
  10. 10.
    Heye T, Merkle EM, Reiner CS, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Gall P, Bashir MR, Dale BM (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra-and interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis. Radiology 266:812–821CrossRefGoogle Scholar
  11. 11.
    Di Giovanni P, Azlan CA, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW (2010) The accuracy of pharmacokinetic parameter measurement in DCE-MRI of the breast at 3 T. Phys Med Biol 55:121–132.  https://doi.org/10.1088/0031-9155/55/1/008 CrossRefGoogle Scholar
  12. 12.
    Cramer SP, Simonsen H, Frederiksen J, Rostrup E, Larsson H (2014) Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage 4:182–189CrossRefGoogle Scholar
  13. 13.
    Aerts HJ, Jaspers K, Backes WH (2011) The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration. Phys Med Biol 56:5665–5678.  https://doi.org/10.1088/0031-9155/56/17/013 CrossRefGoogle Scholar
  14. 14.
    Cheng HLM (2008) Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging 28:736–743CrossRefGoogle Scholar
  15. 15.
    Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, Ganeshan D, Abramson RG, Burton KR, Yu JP, Scalzetti EM, Yankeelov TE, Subramaniam RM, Lenchik L (2015) Clinical utility of quantitative imaging. Acad Radiol 22:33–49.  https://doi.org/10.1016/j.acra.2014.08.011 CrossRefGoogle Scholar
  16. 16.
    Obuchowski NA, Buckler A, Kinahan P, Chen-Mayer H, Petrick N, Barboriak DP, Bullen J, Barnhart H, Sullivan DC (2016) Statistical issues in testing conformance with the quantitative imaging biomarker alliance (QIBA) profile claims. Acad Radiol 23:496–506CrossRefGoogle Scholar
  17. 17.
    Barnhart HX, Barboriak DP (2009) Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol 2:231–235CrossRefGoogle Scholar
  18. 18.
    Sorensen AG (2006) Magnetic resonance as a cancer imaging biomarker. J Clin Oncol 24:3274–3281CrossRefGoogle Scholar
  19. 19.
    Parker GJM, Padhani AR (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, HobokenGoogle Scholar
  20. 20.
    Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40:99–121CrossRefGoogle Scholar
  21. 21.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155.  https://doi.org/10.1002/hbm.10062 CrossRefGoogle Scholar
  22. 22.
    Liberman G, Louzoun Y, Artzi M, Nadav G, Ewing JR, Ben Bashat D (2016) DUSTER: dynamic contrast enhance up-sampled temporal resolution analysis method. Magn Reson Imaging 34:442–450.  https://doi.org/10.1016/j.mri.2015.12.014 CrossRefGoogle Scholar
  23. 23.
    Deoni SC, Peters TM, Rutt BK (2005) High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 53:237–241CrossRefGoogle Scholar
  24. 24.
    Liberman G, Louzoun Y, Ben Bashat D (2014) T1 mapping using variable flip angle SPGR data with flip angle correction. J Magn Reson Imaging 40:171–180CrossRefGoogle Scholar
  25. 25.
    Murase K (2004) Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med 51:858–862.  https://doi.org/10.1002/mrm.20022 CrossRefGoogle Scholar
  26. 26.
    Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M, Jiang Q, Scarpace L, Arbab AS, Narang J, Soltanian-Zadeh H, Paudyal R, Ewing JR (2012) Model selection for DCE-T1 studies in glioblastoma. Magn Reson Med 68:241–251.  https://doi.org/10.1002/mrm.23211 CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefGoogle Scholar
  28. 28.
    Bland JM, Altman DG (1996) Statistics notes: measurement error. BMJ 313:744CrossRefGoogle Scholar
  29. 29.
    O’connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, Boellaard R, Bohndiek SE, Brady M, Brown G (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169CrossRefGoogle Scholar
  30. 30.
    Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M, Jiang Q, Scarpace L, Arbab AS, Narang J, Soltanian-Zadeh H (2012) Model selection for DCE-T1 studies in glioblastoma. Magn Reson Med 68:241–251CrossRefGoogle Scholar
  31. 31.
    Artzi M, Bokstein F, Blumenthal DT, Aizenstein O, Liberman G, Corn BW, Ben Bashat D (2014) Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: a longitudinal MRI study. Eur J Radiol 83:1250–1256CrossRefGoogle Scholar
  32. 32.
    Blumenthal D, Artzi M, Liberman G, Bokstein F, Aizenstein O, Ben Bashat D (2017) Classification of high-grade glioma into tumor and nontumor components using support vector machine. Am J Neuroradiol.  https://doi.org/10.3174/ajnr.A5127 Google Scholar
  33. 33.
    Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, Merkle EM, Boll DT (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811.  https://doi.org/10.1148/radiol.12120278 CrossRefGoogle Scholar
  34. 34.
    Huang W, Li X, Chen Y, Li X, Chang MC, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, Fedorov A, Tudorica A, Gupta SN, Laymon CM, Marro KI, Dyvorne HA, Miller JV, Barbodiak DP, Chenevert TL, Yankeelov TE, Mountz JM, Kinahan PE, Kikinis R, Taouli B, Fennessy F, Kalpathy-Cramer J (2014) Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol 7:153–166CrossRefGoogle Scholar
  35. 35.
    Conte GM, Castellano A, Altabella L, Iadanza A, Cadioli M, Falini A, Anzalone N (2017) Reproducibility of dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI in the study of brain gliomas: a comparison of data obtained using different commercial software. La Radiol Med 122:294–302CrossRefGoogle Scholar
  36. 36.
    Galbraith SM, Rustin GJ, Lodge MA, Taylor NJ, Stirling JJ, Jameson M, Thompson P, Hough D, Gumbrell L, Padhani AR (2002) Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 20:3826–3840CrossRefGoogle Scholar
  37. 37.
    Evelhoch JL, LoRusso PM, He Z, DelProposto Z, Polin L, Corbett TH, Langmuir P, Wheeler C, Stone A, Leadbetter J, Ryan AJ, Blakey DC, Waterton JC (2004) Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin Cancer Res 10:3650–3657.  https://doi.org/10.1158/1078-0432.CCR-03-0417 CrossRefGoogle Scholar
  38. 38.
    Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjørnerud A, Vangel MG, Gerstner ER, Schmainda KM, Paynabar K, Wu O, Wen PY (2015) Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl Oncol 8:137–146CrossRefGoogle Scholar
  39. 39.
    Geri O, Shiran SI, Roth J, Artzi M, Ben-Sira L, Ben Bashat D (2017) Vascular territorial segmentation and volumetric blood flow measurement using dynamic contrast enhanced magnetic resonance angiography of the brain. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X17702394 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sagol Brain InstituteTel Aviv Sourasky Medical CenterTel-AvivIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Neuro-Oncology ServiceTel Aviv Sourasky Medical CenterTel AvivIsrael
  4. 4.Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations