Journal of Neuro-Oncology

, Volume 133, Issue 3, pp 561–569 | Cite as

Nivolumab for patients with recurrent glioblastoma progressing on bevacizumab: a retrospective case series

Clinical Study

Abstract

A single institution retrospective evaluation of nivolumab following disease progression on bevacizumab in adults with recurrent glioblastoma (GBM) with an objective of determining progression free survival (PFS). There is no accepted therapy for recurrent GBM after failure of bevacizumab. 16 adults, ages 52–72 years (median 62), with recurrent GBM were treated. All patients had previously been treated with surgery, concurrent radiotherapy and temozolomide, and post-radiotherapy temozolomide. Bevacizumab (with or without lomustine) was administered to all patients at first recurrence. Patients were treated with nivolumab only (3 mg/kg) once every 2 weeks at second recurrence. One cycle of nivolumab was defined as 2 treatments. Neurological evaluation was performed bi-weekly and neuroradiographic assessment every 4 weeks. A total of 37 treatment cycles (median 2) were administered of nivolumab in which there were 14 Grade 2 adverse events (AEs) and Grade 3 AEs in two patients. No Grade 4 or 5 AEs were seen. Following 1 month of nivolumab, seven patients demonstrated progressive disease and discontinued therapy. No patient demonstrated a response though nine patients demonstrated neuroradiographic stable response. Survival in the entire cohort ranged from 2 to 6 months with a median of 3.5 months (CI 2.8, 4.2). Median and 6-month PFS at 6 months was 2.0 months (range 1–5 months; CI 1.3, 2.7) and 0% respectively. Nivolumab salvage therapy demonstrated no survival advantage in patients with recurrent bevacizumab refractory GBM emphasizing a continued unmet need in neuro-oncology.

Keywords

Nivolumab Immune checkpoint inhibitor Recurrent glioblastoma Bevacizumab refractory 

Notes

Author contribution

MC Chamberlain collected and analyzed data.

Compliance with ethical standards

Conflict of interest

The author reports no conflict of interest.

References

  1. 1.
    de Groot JF (2015) High-grade gliomas. Continuum (Minneap Minn). Neuro-oncology 21(2):332–344Google Scholar
  2. 2.
    Woehrer A, Bauchet L, Barnholtz-Sloan JS (2014) Glioblastoma survival: has it improved? Evidence from population-based studies. Curr Opin Neurol 27(6):666–674PubMedGoogle Scholar
  3. 3.
    Domingo-Musibay E, Galanis E (2015) What next for newly diagnosed glioblastoma? Future Oncol 11(24):3273–3283CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weller M, Cloughesy T, Perry JR, Wick W (2013) Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro-oncology 15(1):4–27CrossRefPubMedGoogle Scholar
  5. 5.
    Park JK, Hodges T, Arko L et al (2010) Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 28(24):3838–3843CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brem H, Piantadoei S, Burger PC et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345(8956):1008–1012CrossRefPubMedGoogle Scholar
  7. 7.
    Attenello FJ, Mukherjee D, Datoo G et al (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893CrossRefPubMedGoogle Scholar
  8. 8.
    Bogdana Suchorska B, Weller M, Tabatabai G et al (2016) Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma—results from the DIRECTOR trial. Neuro-oncology 18(4):549–556CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clarke JL, Ennis MM, Yung WK et al (2011) Is surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma? Neuro-oncology 13(10):1118–1124CrossRefPubMedGoogle Scholar
  10. 10.
    Torcuator R, Thind R, Patel et al (2010) The role of salvage re-irradiation for malignant gliomas that progress on bevacizumab. J Neuro-oncol 97(3):401–407CrossRefGoogle Scholar
  11. 11.
    Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic re-irradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23(24):8863–8869CrossRefPubMedGoogle Scholar
  12. 12.
    Fogh SE, Andrews DW, Glass J et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28(18):3048–3053CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wick W, Fricke H, Junge K et al (2014) A phase II, randomized, study of weekly APG101+ re-irradiation versus re-irradiation in progressive glioblastoma. Clin Cancer Res 20(24):6304–6313CrossRefPubMedGoogle Scholar
  14. 14.
    Perry J, Bélanger K, Mason WP et al (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28:2051–2057CrossRefPubMedGoogle Scholar
  15. 15.
    Weller M, Tabatabai G, Kästner B et al (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 21(9):2057–2064CrossRefPubMedGoogle Scholar
  16. 16.
    Han SJ, Rolston JD, Molinaro AM et al (2014) Phase II trial of 7 days on/7 days off temozolomide for recurrent high-grade glioma. Neuro-oncology 16(9):1255–1262CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomized phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202CrossRefPubMedGoogle Scholar
  18. 18.
    van den Bent M, Taal W (2014) Are we done with dose-intense temozolomide in recurrent glioblastoma? Neuro-oncology 16(9):1161–1163CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wick W, Puduvalli VK, Chamberlain MC et al (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28(7):1168–1174CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Batchelor TT, Mulholland P, Neyns B et al (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31(26):3212–3225CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10):779–787CrossRefPubMedGoogle Scholar
  22. 22.
    Friedman HS, Prados MD et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740CrossRefPubMedGoogle Scholar
  23. 23.
    Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745CrossRefPubMedGoogle Scholar
  24. 24.
    Nghiemphu PL, Liu W, Lee Y et al (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72(14):1217–1222CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Taal W, Oosterkamp HM, Walenkamp AM et al (2014) Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomized controlled phase 2 trial. Lancet Oncol 15(9):943–953CrossRefPubMedGoogle Scholar
  26. 26.
    Field KM, Simes J, Nowak AK et al (2015) Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro-oncology 17(11):1504–1513CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wick W, Stupp R, Gorlia T et al (2016) EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine in patients with first progression of a glioblastoma. J Clin Oncol 33(15s) (Abstract 2001)Google Scholar
  28. 28.
    Quant EC, Norden AD, Drappatz J et al (2009) Role of a second chemotherapy in recurrent malignant glioma patients who progress on bevacizumab. Neuro-oncology 11(5):550–555CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chamberlain MC, Johnston SK (2010) Salvage therapy with single agent bevacizumab for recurrent glioblastoma. J Neuro-oncol 96(2):259–269CrossRefGoogle Scholar
  30. 30.
    Hovey EJ, Field KM, Rosenthal M et al (2015) Continuing or ceasing bevacizumab at disease progression: results from the CABARET study, a prospective randomized phase II trial in patients with recurrent glioblastoma. J Clin Oncol 33(15s) (suppl; abstr 2003)Google Scholar
  31. 31.
    Chamberlain MC, Grimm S, Phuphanich S, The Brain Tumor Investigational Consortium (BTIC) (2014) A phase 2 trial of verubulin for recurrent glioblastoma: a prospective study by the brain tumor investigational consortium (BTIC). J Neuro-oncol 118(2):335–343CrossRefGoogle Scholar
  32. 32.
    Chamberlain MC, Johnston SA (2011) Salvage chemotherapy with single agent bendamustine for recurrent glioblastoma. J Neurooncol 105(3):523–530CrossRefPubMedGoogle Scholar
  33. 33.
    Ahluwalia MS, Rogers LR, Chaudhary RT et al (2016) A phase 2 trial of TRC105 with bevacizumab for bevacizumab refractory glioblastoma. J Clin Oncol 33(15s) (abstract 2035)Google Scholar
  34. 34.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tumeh PC, Harview CL, Yearly JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Reardon DA, Freeman D, Wu C et al (2014) Immunotherapy advances for glioblastoma. Neuro-oncology 16(11):1441–1458CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wen P, Macdonald DR, Reardon DA, et al (2009) Proposal for updated response assessment criteria for high-grade gliomas: radiology assessment for neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefGoogle Scholar
  39. 39.
    Piccioni DE, Selfridge J, Mody RR et al (2014) Deferred use of bevacizumab for recurrent glioblastoma is not associated with diminished efficacy. Neuro-oncology 16(5):815–822CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sathornsumetee S, Desjardins A, Vredenburgh JJ et al (2010) Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro-oncology 12(12):1300–1310CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Reardon DA, Desjardins A, Vredenburgh JJ et al (2009) Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 101(12):1986–1994CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vredenburgh J, Desjardins JA, Herndon JE 2nd et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25(30):4722–4729CrossRefPubMedGoogle Scholar
  43. 43.
    Brenner AJ, Cohen YC, Vredenburgh JJ et al (2016) Ofranogene obadenovec (VB-111), an anti-cancer gene therapy in combination with bevacizumab to improve overall survival compared to bevacizumab monotherapy in patients with rGBM: a phase 2 historically controlled trial. J Clin Oncol 33(15s) (abstract 2074)Google Scholar
  44. 44.
    Bota DA, Desjardins A, Mason WP et al (2016) Phase 1, multicenter, open-label, dose escalation, study of marizomib (MRZ) and bevacizumab (BEV) in WHO grade IV malignant glioma (G4 MG). J Clin Oncol 34(18s) (abstract 2037)Google Scholar
  45. 45.
    Goldlust SA, Nabors LB, Mohile N et al (2016) Phase 1/2 trial of bevacizumab plus TPI 287, a brain penetrable anti-microtubule agent, in patients with recurrent glioblastoma. J Clin Oncol 34(18s) (abstract 2055)Google Scholar
  46. 46.
    Nayak L, Hays JL, Muzikansky A et al (2016) A phase I study of MLN0128 and bevacizumab in patients with recurrent glioblastoma and other solid tumors. J Clin Oncol 33(15s) (abstract 2013)Google Scholar
  47. 47.
    Hoang-Xuan K, Hottinger A, Royer-Perron L et al (2016) Phase I/II study of S49076, a multi-target inhibitor of c-MET, AXL, FGFR in combination with bevacizumab in patients with recurrent glioblastoma. J Clin Oncol 33(15s) (abstract 2033)Google Scholar
  48. 48.
    Reardon DA, De Groot JF, Colman H et al (2016) Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). J Clin Oncol 33(15s) (abstract 2010)Google Scholar
  49. 49.
    Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRefPubMedGoogle Scholar
  50. 50.
    Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028CrossRefPubMedGoogle Scholar
  51. 51.
    Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    McDermott DF, Drake CG, Sznol M et al (2015) Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol 33(18):2013–2020CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hamanishi J, Mandai M, Ikeda T et al (2015) Safety and antitumor activity of anti–PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 33(34):4015–4022CrossRefPubMedGoogle Scholar
  54. 54.
    Lesokhin Am, Ansell SM, Armand P et al (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 34(23):2698–2704CrossRefPubMedGoogle Scholar
  55. 55.
    Roemer MGM, Advani RH, Ligon AH et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 34(27):2690–2697CrossRefPubMedGoogle Scholar
  56. 56.
    Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-1 antibody MPDL3280A in cancer patients. Nature 515:563–567CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Champiat S, Ferte C, Lebel-Binay S et al (2014) Exomics and immunogenics: bridging mutational load and immune checkpoint efficacy. Oncoimmunology 3:e27817CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch repair deficiency. N Engl J Med 372:2509–2520CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bouffet E, Larouche V, Campbell BB et al (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34(19):2206–2211CrossRefPubMedGoogle Scholar
  61. 61.
    Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33(31):3541–3543CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of Neuro-Oncology, Department of Neurology and Neurosurgery, Fred Hutchinson Cancer Center, Seattle Cancer Care AllianceUniversity of WashingtonSeattleUSA
  2. 2.Department of NeurologyUniversity of WashingtonSeattleUSA

Personalised recommendations