Journal of Neuro-Oncology

, Volume 133, Issue 2, pp 429–434 | Cite as

Chemoradiation impairs normal developmental cortical thinning in medulloblastoma

  • Palak Kundu
  • Matthew D. Li
  • Ben Y. Durkee
  • Susan M. Hiniker
  • Karl Bush
  • Rie von Eyben
  • Michelle L. Monje
  • Kristen W. Yeom
  • Sarah S. Donaldson
  • Iris C. GibbsEmail author
Clinical Study


Medulloblastoma patients are treated with surgery, radiation and chemotherapy. Radiation dose to the temporal lobe may be associated with neurocognitive sequelae. Longitudinal changes of temporal lobe cortical thickness may result from neurodevelopmental processes such as synaptic pruning. This study applies longitudinal image analysis to compare developmental change in cortical thickness in medulloblastoma (MB) patients who were treated by combined modality therapy to that of cerebellar juvenile pilocytic astrocytoma (JPA) patients who were treated by surgery alone. We hypothesized that the rates of developmental change in cortical thickness would differ between these two groups. This retrospective cohort study assessed changes in cortical thickness over time between MB and JPA patients. High-resolution magnetic resonance (MR) images of 14 MB and 7 JPA subjects were processed to measure cortical thickness of bilateral temporal lobe substructures. A linear mixed effects model was used to identify differences in substructure longitudinal changes in cortical thickness. The left temporal lobe exhibited overall increased cortical thickness in MB patients relative to JPA patients who showed overall cortical thinning (mean annual cortical thickness change: MB 0.14 mm/year versus JPA −0.018 mm/year across all substructures), particularly in the inferior temporal lobe substructures (p < 0.0001). The cortical thickness change of the right temporal lobe substructures exhibited similar, though attenuated trends (p = 0.002). MB patients exhibit overall increased cortical thickness rather than cortical thinning as seen in JPA patients and as expected in normal cortical development. These observations are possibly due to chemoradiation induced-disruption of normal neuronal mechanisms. Longitudinal image analysis may identify early biomarkers for neurocognitive function with routine imaging.


Medulloblastoma Chemoradiation Neurocognitive Cortical thinning 


Compliance with ethical standards

Conflict of interest

No conflict of interest to disclose.


  1. 1.
    Armstrong GT, Jain N, Liu W et al (2010) Region-specific radiotherapy and neuropsychological outcomes in adult survivors of childhood CNS malignances. Neuro-Oncology 12(11):1173–1186CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu AK, Marcus KJ, Fischl B et al (2007) Changes in cerebral cortex of children treated for medulloblastoma. Int J Radiat Oncol Biol Phys 68(4):992–998CrossRefPubMedGoogle Scholar
  3. 3.
    Shaw P, Greenstein D, Lerch JP et al (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679CrossRefPubMedGoogle Scholar
  4. 4.
    Reuter M, Schmansky NJ, Rosas HD et al (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mills KL, Tamnes CK (2014) Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cognit Neurosci 9:172–190CrossRefGoogle Scholar
  6. 6.
    Redmond KJ, Mahone EM, Terezakis S et al (2013) Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro-Oncology 15(3):360–369CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jalali R, Mallick I, Debnarayan D et al (2010) Factors influencing neurocognitive outcomes in young patients with benign and low-grade brain tumors treated with stereotactic conformal radiotherapy. Int J Radiat Oncol Biol Phys 77(4):974–979CrossRefPubMedGoogle Scholar
  8. 8.
    Meletti S, Benuzzi F, Cantalupo G, Rubboli G, Tassinari CA, Nichelli P (2009) Facial emotion recognition impairment in chronic temporal lobe epilepsy. Epilepsia 50(6):1547–1559CrossRefPubMedGoogle Scholar
  9. 9.
    Walpole P, Isaac CL, Reynders HJ (2008) A comparison of emotional and cognitive intelligence in people with and without temporal lobe epilepsy. Epilepsia 49(8):1470–1474CrossRefPubMedGoogle Scholar
  10. 10.
    Sowell ER, Thompson PM, Leonard CM et al (2004) Longitudinal mapping of cortical thickness and brain brown in normal children. J Neurosci 24(38):8223–8231CrossRefPubMedGoogle Scholar
  11. 11.
    Schnack HG, van Haren NEM, Brouwer RM, Evans A, Durston S, Boomsma DI, Kahn RS, Hulshoff Pol HE (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25(6):1608–1617CrossRefPubMedGoogle Scholar
  12. 12.
    Zhan Y, Paolicelli RC, Sforazzini F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–440CrossRefPubMedGoogle Scholar
  13. 13.
    Monje ML, Mizumatsu S, Fike JR et al (2002) Irradiation incudes neural precursor-cell dysfunction. Nat Med 8(9):955–962CrossRefPubMedGoogle Scholar
  14. 14.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765CrossRefPubMedGoogle Scholar
  15. 15.
    Monje ML, Vogel H, Masek M et al (2007) Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 62(5):515–520CrossRefPubMedGoogle Scholar
  16. 16.
    Mizumatsu S, Monje MM, Morhardt DR et al (2003) Exteme sensitivity of adult neurogenesis to low dose of x-irradiation. Cancer Res 63:4021–4027PubMedGoogle Scholar
  17. 17.
    Li MD, Burns TC, Kumar S et al (2015) Aging-like changes in the transcriptome of irradiated microglia. Glia 63:754–767CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rice RA, Spangenberg EE, Yamate-Morgan H et al (2015) Elimination of microglia improves functional outcomes following extensive neuronal loss in hippocampus. J Neurosci 35(27):9977–9989CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Elmore MRP, Najafi AR, Koike MA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Margol AS, Robison NJ, Gnanachandran J et al (2015) Tumor-associated macrophages in SHH subgroup of medulloblastomas. Clin Cancer Res 21(6):1457–1465CrossRefPubMedGoogle Scholar
  21. 21.
    Shaw P, Kabani NJ, Lerch JP et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594CrossRefPubMedGoogle Scholar
  22. 22.
    Desikan RS et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Palak Kundu
    • 1
  • Matthew D. Li
    • 2
  • Ben Y. Durkee
    • 1
  • Susan M. Hiniker
    • 1
  • Karl Bush
    • 1
  • Rie von Eyben
    • 1
  • Michelle L. Monje
    • 3
  • Kristen W. Yeom
    • 2
  • Sarah S. Donaldson
    • 1
  • Iris C. Gibbs
    • 1
    Email author
  1. 1.Department of Radiation OncologyStanford University School of MedicineStanfordUSA
  2. 2.Division of Pediatric Radiology, Department of RadiologyStanford University School of MedicineStanfordUSA
  3. 3.Division of Child Neurology, Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA

Personalised recommendations