Skip to main content

Advertisement

Log in

Improving the utility of 1H-MRS for the differentiation of glioma recurrence from radiation necrosis

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) has shown promise in distinguishing recurrent high-grade glioma from posttreatment radiation effect (PTRE). The purpose of this study was to establish objective 1H-MRS criteria based on metabolite peak height ratios to distinguish recurrent tumor (RT) from PTRE. A retrospective analysis of magnetic resonance imaging and 1H-MRS data was performed. Spectral metabolites analyzed included N-acetylaspartate, choline (Cho), creatine (Cr), lactate (Lac), and lipids (Lip). Quantitative 1H-MRS criteria to differentiate RT from PTRE were identified using 81 biopsy-matched spectral voxels. A receiver operating characteristic curve analysis was conducted for all metabolite ratio combinations with the pathology diagnosis as the classification variable. Forward discriminant analysis was used to identify ratio variables that maximized the correct classification of RT versus PTRE. Our results were applied to 205 records without biopsy-matched voxels to examine the percent agreement between our criteria and the radiologic diagnoses. Five ratios achieved an acceptable balance [area under the curve (AUC) ≥ 0.700] between sensitivity and specificity for distinguishing RT from PTRE, and each ratio defined a criterion for diagnosing RT. The ratios are as follows: Cho/Cr > 1.54 (sensitivity 66%, specificity 79%), Cr/Cho ≤ 0.63 (sensitivity 65%, specificity 79%), Lac/Cho ≤ 2.67 (sensitivity 85%, specificity 58%), Lac/Lip ≤ 1.64 (sensitivity 54%, specificity 95%), and Lip/Lac > 0.58 (sensitivity 56%, specificity 95%). Application of our ratio criteria in prospective studies may offer an alternative to biopsy or visual spectral pattern recognition to distinguish RT from PTRE in patients with gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

Cho:

Choline

Cr:

Creatine

FLAIR:

Fluid attenuation inversion recovery

GBM:

Glioblastoma multiforme

1H-MRS:

Proton magnetic resonance spectroscopy

Lac:

Lactate

Lip:

Lipids

MRI:

Magnetic resonance imaging

NAA:

N-acetylaspartate

PTRE:

Posttreatment radiation effect

RT:

Recurrent tumor

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16:896–913. doi:10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461. doi:10.1016/S1470-2045(08)70125-6

    Article  PubMed  Google Scholar 

  4. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537

    Article  PubMed  Google Scholar 

  5. Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83. doi:10.1007/s11060-006-9241-y

    Article  PubMed  Google Scholar 

  6. Castillo M, Kwock L, Mukherji SK (1996) Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 17:1–15

    CAS  PubMed  Google Scholar 

  7. Ricci PE, Pitt A, Keller PJ, Coons SW, Heiserman JE (2000) Effect of voxel position on single-voxel MR spectroscopy findings. AJNR Am J Neuroradiol 21:367–374

    CAS  PubMed  Google Scholar 

  8. Lee PL, Gonzalez RG (2000) Magnetic resonance spectroscopy of brain tumors. Curr Opin Oncol 12:199–204

    Article  CAS  PubMed  Google Scholar 

  9. Guo J, Yao C, Chen H, Zhuang D, Tang W, Ren G, Wang Y, Wu J, Huang F, Zhou L (2012) The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas. Acta Neurochir 154:1361–1370. doi:10.1007/s00701-012-1418-x (discussion 1370)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, Comstock B, Jarvik JG (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27:1404–1411

    CAS  PubMed  Google Scholar 

  11. Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2:323–325

    Article  CAS  PubMed  Google Scholar 

  12. Preul MC, Caramanos Z, Leblanc R, Villemure JG, Arnold DL (1998) Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR Biomed 11:192–200

    Article  CAS  PubMed  Google Scholar 

  13. Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381. doi:10.1007/s00234-001-0760-0

    Article  CAS  PubMed  Google Scholar 

  14. Usenius T, Usenius JP, Tenhunen M, Vainio P, Johansson R, Soimakallio S, Kauppinen R (1995) Radiation-induced changes in human brain metabolites as studied by 1 H nuclear magnetic resonance spectroscopy in vivo. Int J Radiat Oncol Biol Phys 33:719–724. doi:10.1016/0360-3016(95)02011-Y

    Article  CAS  PubMed  Google Scholar 

  15. Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK (2016) Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS ONE 11:e0141438. doi:10.1371/journal.pone.0141438

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR, Liu S, Karis JP, Smith KA, Coons SW, Nakaji P, Spetzler RF, Feuerstein BG, Debbins J, Baxter LC (2012) Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro-oncology 14:919–930. doi:10.1093/neuonc/nos112

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funds from Newsome United Kingdom Chair in Neurosurgery Research held by Dr. Preul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Preul.

Ethics declarations

Conflict of interest

None.

Additional information

Ian D. Crain and Petra S. Elias have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crain, I.D., Elias, P.S., Chapple, K. et al. Improving the utility of 1H-MRS for the differentiation of glioma recurrence from radiation necrosis. J Neurooncol 133, 97–105 (2017). https://doi.org/10.1007/s11060-017-2407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2407-y

Keywords

Navigation