Journal of Neuro-Oncology

, Volume 132, Issue 3, pp 507–512 | Cite as

Incidence of CNS tumors in Appalachian children

  • Bin Huang
  • Alice Luo
  • Eric B. Durbin
  • Ellen Lycan
  • Thomas Tucker
  • Quan Chen
  • Craig Horbinski
  • John L. Villano
Clinical Study

Abstract

Determine whether the risk of astrocytomas in Appalachian children is higher than the national average. We compared the incidence of pediatric brain tumors in Appalachia versus non-Appalachia regions, covering years 2000–2011. The North American Association of Central Cancer Registries (NAACCR) collects population-based data from 55 cancer registries throughout U.S. and Canada. All invasive primary (i.e. non-metastatic tumors), with age at diagnosis 0–19 years old, were included. Nearly 27,000 and 2200 central nervous system (CNS) tumors from non-Appalachia and Appalachia, respectively comprise the cohorts. Age-adjusted incidence rates of each main brain tumor subtype were compared. The incidence rate of pediatric CNS tumors was 8% higher in Appalachia, 3.31 [95% CI 3.17–3.45] versus non–Appalachia, 3.06, [95% CI 3.02–3.09] for the years 2001–2011, all rates are per 100,000 population. Astrocytomas accounted for the majority of this difference, with the rate being 16% higher in Appalachian children, 1.77, [95% CI 1.67–1.87] versus non-Appalachian children, 1.52, [95% CI 1.50–1.55]. Among astrocytomas, World Health Organization (WHO) grade I astrocytomas were 41% higher in Appalachia, 0.63 [95% CI 0.56–0.70] versus non-Appalachia 0.44 [95% CI 0.43–0.46] for the years 2004–2011. This is the first study to demonstrate that Appalachian children are at greater risk of CNS neoplasms, and that much of this difference is in WHO grade I astrocytomas, 41% more common. The cause of this increased incidence is unknown and we discuss the importance of this in relation to genetic and environmental findings in Appalachia.

Keywords

Appalachia Pediatric Brain tumor Astrocytoma Pilocytic 

Notes

Acknowledgements

CH was supported by the National Cancer Institute (K08CA155764). The University of Kentucky Biospecimen and Tissue Procurement Shared Resource Facility, Cancer Research Informatics Shared Resource Facility, and Biostatistics and Bioinformatics Shared Resource Facility are supported by the Markey Cancer Center (P30CA177558). JLV was supported by the National Cancer Institute (R03CA156561). The project was also supported by the National Center for Advancing Translational Sciences, through Grant UL1TR000117 and the Centers for Disease Control and Prevention Grant U58DP005400, Enhancing Cancer Registries for Early Case Capture of Pediatric and Young Adult Cases. The authors have no conflicts of interest to disclose.

References

  1. 1.
    Linabery AM, Ross JA (2008) Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 112(2):416–432CrossRefPubMedGoogle Scholar
  2. 2.
    Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(Suppl 4):iv1–iv63CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ostrom QT, de Blank PM, Kruchko C et al (2015) Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 10):x1–x36CrossRefPubMedGoogle Scholar
  4. 4.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classification of tumors of the central nervous system, 4th edn. Lyon: IARC, World Health Organization Classification of TumorsGoogle Scholar
  5. 5.
    Ostrom QT, Bauchet L, Davis FG et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16(7):896–913CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jones DT, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bondy ML, Scheurer ME, Malmer B et al (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 13(7 Suppl):1953–1968CrossRefGoogle Scholar
  8. 8.
    Moore SC, Rajaraman P, Dubrow R et al (2009) Height, body mass index, and physical activity in relation to glioma risk. Cancer Res 69(21):8349–8355.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kitahara CM, Gamborg M, Rajaraman P, Sorensen TI, Baker JL (2014) A prospective study of height and body mass index in childhood, birth weight, and risk of adult glioma over 40 years of follow-up. Am J Epidemiol 180(8):821–829CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P (2005) International Classification of Childhood Cancer, third edition. Cancer 103(7):1457–1467CrossRefPubMedGoogle Scholar
  11. 11.
    National Cancer Institute (2014) International Classification of Childhood Cancer (ICCC), 3rd edn. http://seer.cancer.gov/iccc/. Accessed 26 June 2015
  12. 12.
    Fay MP, Tiwari RC, Feuer EJ, Zou Z (2006) Estimating average annual percent change for disease rates without assuming constant change. Biometrics 62(3):847–854CrossRefPubMedGoogle Scholar
  13. 13.
    Clendenning M, Baze ME, Sun S et al (2008) Origins and prevalence of the American Founder Mutation of MSH2. Cancer Res 68(7):2145–2153CrossRefPubMedGoogle Scholar
  14. 14.
    Schiffman JD, Hodgson JG, VandenBerg SR (2010) et al Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2):512–519CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fahmideh MA, Lavebratt C, Schuz J et al (2015) CCDC26, CDKN2BAS, RTEL1 and TERT polymorphisms in pediatric brain tumor susceptibility. Carcinogenesis 36:876–882CrossRefGoogle Scholar
  16. 16.
    Gutmann DH, McLellan MD, Hussain I et al (2013) Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res 23(3):431–439CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wrensch M, Jenkins RB, Chang JS et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brooks DR, Mucci LA, Hatch EE, Cnattingius S (2004) Maternal smoking during pregnancy and risk of brain tumors in the offspring. A prospective study of 1.4 million Swedish births. Cancer Causes Control 15(10):997–1005CrossRefPubMedGoogle Scholar
  19. 19.
    Wingo PA, Tucker TC, Jamison PM et al (2008) Cancer in Appalachia, 2001–2003. Cancer 112(1):181–192CrossRefPubMedGoogle Scholar
  20. 20.
    Lengerich EJ, Tucker TC, Powell RK et al (2005) Cancer incidence in Kentucky, Pennsylvania, and West Virginia: disparities in Appalachia. J Rural Health 21(1):39–47CrossRefPubMedGoogle Scholar
  21. 21.
    Mueller BA, Searles Nielsen S, Preston-Martin S et al (2004) Household water source and the risk of childhood brain tumours: results of the SEARCH International Brain Tumor Study. International J Epidemiol 33(6):1209–1216CrossRefGoogle Scholar
  22. 22.
    Hughes J, Whisnant R, Weller L et al (2005) Drinking Water and Wastewater Infrastructure in Appalachia, pp 27–56. http://www.arc.gov/assets/research_reports/DrinkingWaterandWastewaterInfrastructure.pdf.
  23. 23.
    Fernandez-Navarro P, Garcia-Perez J, Ramis R, Boldo E, Lopez-Abente G (2012) Proximity to mining industry and cancer mortality. Sci Total Environ 435–436:66–73CrossRefPubMedGoogle Scholar
  24. 24.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29CrossRefPubMedGoogle Scholar
  25. 25.
    Li J, Thompson TD, Miller JW, Pollack LA, Stewart SL (2008) Cancer incidence among children and adolescents in the United States, 2001–2003. Pediatrics 121(6):e1470–e1477CrossRefPubMedGoogle Scholar
  26. 26.
    Davis F, Il’yasova D, Rankin K, McCarthy B, Bigner DD (2011) Medical diagnostic radiation exposures and risk of gliomas. Radiation Res 175(6):790–796CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Bmj 346:f2360CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ron E, Modan B, Boice JD Jr., et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. New Engl J Med 319(16):1033–1039CrossRefPubMedGoogle Scholar
  29. 29.
    Puget S, Blauwblomme T, Grill J (2012) Is biopsy safe in children with newly diagnosed diffuse intrinsic pontine glioma? Am Soc Clin Oncol Educ Book 629–633. doi: 10.14694/EdBook_AM.2012.32.629

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bin Huang
    • 1
    • 2
  • Alice Luo
    • 3
  • Eric B. Durbin
    • 1
    • 2
    • 3
  • Ellen Lycan
    • 1
    • 2
  • Thomas Tucker
    • 1
    • 2
  • Quan Chen
    • 1
    • 2
  • Craig Horbinski
    • 5
  • John L. Villano
    • 1
    • 4
  1. 1.Markey Cancer CenterUniversity of KentuckyLexingtonUSA
  2. 2.Kentucky Cancer RegistryLexingtonUSA
  3. 3.College of MedicineUniversity of KentuckyLexingtonUSA
  4. 4.Division of Medical OncologyUniversity of KentuckyLexingtonUSA
  5. 5.Departments of Pathology and NeurosurgeryNorthwestern UniversityChicagoUSA

Personalised recommendations