Journal of Neuro-Oncology

, Volume 132, Issue 2, pp 219–229 | Cite as

Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells

  • Amber L. Rowse
  • Sara A. Gibson
  • Gordon P. Meares
  • Rajani Rajbhandari
  • Susan E. Nozell
  • Kory J. Dees
  • Anita B. Hjelmeland
  • Braden C. McFarlandEmail author
  • Etty N. BenvenisteEmail author
Laboratory Investigation


Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase composed of two catalytic subunits (α) and/or (α′) and two regulatory (β) subunits. The expression and kinase activity of CK2 is elevated in many different cancers, including glioblastoma (GBM). Brain tumor initiating cells (BTICs) are a subset of cells that are highly tumorigenic and promote the resistance of GBM to current therapies. We previously reported that CK2 activity promotes prosurvival signaling in GBM. In this study, the role of CK2 signaling in BTIC function was examined. We found that expression of CK2α was increased in CD133+ BTICs compared to CD133 cells within the same GBM xenolines. Treatment with CX-4945, an ATP-competitive inhibitor of CK2, led to reduced expression of Sox2 and Nestin, transcription factors important for the maintenance of stem cells. Similarly, inhibition of CK2 also reduced the frequency of CD133+ BTICs over the course of 7 days, indicating a role for CK2 in BTIC persistence and survival. Importantly, using an in vitro limiting dilution assay, we found that inhibition of CK2 kinase activity with CX-4945 or siRNA knockdown of the CK2 catalytic subunits reduced neurosphere formation in GBM xenolines of different molecular subtypes. Lastly, we found that inhibition of CK2 led to decreased EGFR levels in some xenolines, and combination treatment with CX-4945 and Gefitinib to inhibit CK2 and EGFR, respectively, provided optimal inhibition of viability of cells. Therefore, due to the integration of CK2 in multiple signaling pathways important for BTIC survival, CK2 is a promising target in GBM.


Glioblastoma CK2 BTIC CD133 EGFR 



We thank Dr. G. Yancey Gillespie and Catherine Langford of the UAB Brain Tumor Animal Models Core Facility (NIH P20CA151129) for assistance, and acknowledge the use of the UAB Rheumatic Diseases Core Center-Comprehensive Flow Cytometry Core (P30 AR048311 and P30 A127667). This work was supported by NIH grants R01CA194414 and R01CA1585340 (E.N.B.), T32NS048039 (A.L.R.), T32AI007051 (S.A.G.), R01CA138517 (S.E.N.) and R01CA1515122 (A.B.H.). Additional funding is from American Brain Tumor Association Discovery Grant (B.C.M.), William E. Cash Jr. Memorial Fund in Neuro-Oncology Research (B.C.M. and S.E.N.), Career Transition Award from the National Multiple Sclerosis Society TA3050-A-1 (G.P.M.), UAB Comprehensive Cancer Center (S.E.N.) and the UAB Brain Tumor SPORE Career Development Award Program via P20CA151129 (A.B.H.).

Supplementary material

11060_2017_2378_MOESM1_ESM.pptx (114 kb)
Supplementary material 1 (PPTX 113 KB)


  1. 1.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507CrossRefPubMedGoogle Scholar
  2. 2.
    Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850CrossRefPubMedGoogle Scholar
  3. 3.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O′Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, Anjum S, Wang J, Manyam G, Zoppoli P, Ling S, Rao AA, Grifford M, Cherniack AD, Zhang H, Poisson L, Carlotti CG Jr, Tirapelli DP, Rao A, Mikkelsen T, Lau CC, Yung WK, Rabadan R, Huse J, Brat DJ, Lehman NL, Barnholtz-Sloan JS, Zheng S, Hess K, Rao G, Meyerson M, Beroukhim R, Cooper L, Akbani R, Wrensch M, Haussler D, Aldape KD, Laird PW, Gutmann DH, Noushmehr H, Iavarone A, Verhaak RG (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Altaner C (2008) Glioblastoma and stem cells. Neoplasma 55(5):369–374PubMedGoogle Scholar
  6. 6.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol Cancer 5:67–78CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760CrossRefPubMedGoogle Scholar
  8. 8.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  9. 9.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401CrossRefPubMedGoogle Scholar
  10. 10.
    Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14(1):123–129CrossRefPubMedGoogle Scholar
  11. 11.
    Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869CrossRefPubMedGoogle Scholar
  12. 12.
    Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(1):1–15CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG, Boldyreff B (2003) Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23(3):908–915CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O′Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28(1):131–139CrossRefPubMedGoogle Scholar
  15. 15.
    Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2012) Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M, Benveniste EN (2013) Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 19(23):6484–6494CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nitta RT, Gholamin S, Feroze AH, Agarwal M, Cheshier SH, Mitra SS, Li G (2015) Casein kinase 2alpha regulates glioblastoma brain tumor-initiating cell growth through the beta-catenin pathway. Oncogene 34(28):3688–3699CrossRefPubMedGoogle Scholar
  18. 18.
    Dubois N, Willems M, Nguyen-Khac MT, Kroonen J, Goffart N, Deprez M, Bours V, Robe PA (2016) Constitutive activation of casein kinase 2 in glioblastomas: absence of class restriction and broad therapeutic potential. Int J Oncol 48(6):2445–2452PubMedGoogle Scholar
  19. 19.
    Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O′Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298CrossRefPubMedGoogle Scholar
  20. 20.
    McFarland BC, Ma JY, Langford CP, Gillespie GY, Yu H, Zheng Y, Nozell SE, Huszar D, Benveniste EN (2011) Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 10(12):2384–2393CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rietze RL, Reynolds BA (2006) Neural stem cell isolation and characterization. Methods Enzymol 419:3–23CrossRefPubMedGoogle Scholar
  22. 22.
    Maecker HT, Frey T, Nomura LE, Trotter J (2004) Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 62(2):169–173CrossRefPubMedGoogle Scholar
  23. 23.
    Meares GP, Liu Y, Rajbhandari R, Qin H, Nozell SE, Mobley JA, Corbett JA, Benveniste EN (2014) PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 34(20):3911–3925CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, Day BW, Li M, Lathia JD, Rich JN, Hjelmeland AB (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16(10):1373–1382CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Guerra B, Siemer S, Boldyreff B, Issinger OG (1999) Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS Lett 462(3):353–357CrossRefPubMedGoogle Scholar
  26. 26.
    Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, Klemm SL, van Oudenaarden A, Jaenisch R (2012) Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150(6):1209–1222CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451CrossRefPubMedGoogle Scholar
  28. 28.
    Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27(1):40–48CrossRefPubMedGoogle Scholar
  29. 29.
    So KS, Kim CH, Rho JK, Kim SY, Choi YJ, Song JS, Kim WS, Choi CM, Chun YJ, Lee JC (2014) Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M. PLoS ONE 9(12):e114000CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pandita A, Aldape KD, Zadeh G, Guha A, James CD (2004) Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer 39(1):29–36CrossRefPubMedGoogle Scholar
  31. 31.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024CrossRefPubMedGoogle Scholar
  32. 32.
    Petras M, Lajtos T, Friedlander E, Klekner A, Pintye E, Feuerstein BG, Szollosi J, Vereb G (2013) Molecular interactions of ErbB1 (EGFR) and integrin-beta1 in astrocytoma frozen sections predict clinical outcome and correlate with Akt-mediated in vitro radioresistance. Neuro Oncol 15(8):1027–1040CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bliesath J, Huser N, Omori M, Bunag D, Proffitt C, Streiner N, Ho C, Siddiqui-Jain A, O′Brien SE, Lim JK, Ryckman DM, Anderes K, Rice WG, Drygin D (2012) Combined inhibition of EGFR and CK2 augments the attenuation of PI3K-Akt-mTOR signaling and the killing of cancer cells. Cancer Lett 322(1):113–118CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang S, Yang YL, Wang Y, You B, Dai Y, Chan G, Hsieh D, Kim IJ, Fang L, Au A, Stoppler HJ, Xu Z, Jablons DM, You L (2014) CK2a, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J Exp Clin Cancer Res 33(1):93PubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang S, Wang Y, Mao JH, Hsieh D, Kim IJ, Hu LM, Xu Z, Long H, Jablons DM, You L (2012) Inhibition of CK2alpha down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells. PLoS ONE 7(6):e38996CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang AQ, Cao XC, Tian L, He L, Liu F (2015) Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3-derived sphere-forming cells. Mol Med Rep 11(3):2221–2226PubMedGoogle Scholar
  37. 37.
    Liu J, Cao XC, Xiao Q, Quan MF (2015) Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2alpha. Mol Med Rep 11(1):665–669PubMedGoogle Scholar
  38. 38.
    Cheong JW, Min YH, Eom JI, Kim SJ, Jeung HK, Kim JS (2010) Inhibition of CK2{alpha} and PI3K/Akt synergistically induces apoptosis of CD34 + CD38- leukaemia cells while sparing haematopoietic stem cells. Anticancer Res 30(11):4625–4634PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations