Advertisement

Journal of Neuro-Oncology

, Volume 131, Issue 3, pp 603–610 | Cite as

Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma

  • Jayashree Kalpathy-Cramer
  • Vyshak Chandra
  • Xiao Da
  • Yangming Ou
  • Kyrre E. Emblem
  • Alona Muzikansky
  • Xuezhu Cai
  • Linda Douw
  • John G. Evans
  • Jorg Dietrich
  • Andrew S. Chi
  • Patrick Y. Wen
  • Stephen Stufflebeam
  • Bruce Rosen
  • Dan G. Duda
  • Rakesh K. Jain
  • Tracy T. Batchelor
  • Elizabeth R. Gerstner
Clinical Study

Abstract

Targeting tumor angiogenesis is a potential therapeutic strategy for glioblastoma because of its high vascularization. Tivozanib is an oral pan-VEGF receptor tyrosine kinase inhibitor that hits a central pathway in glioblastoma angiogenesis. We conducted a phase II study to test the effectiveness of tivozanib in patients with recurrent glioblastoma. Ten adult patients were enrolled and treated with tivozanib 1.5 mg daily, 3 weeks on/1 week off in 28-day cycles. Brain MRI and blood biomarkers of angiogenesis were performed at baseline, within 24–72 h of treatment initiation, and monthly thereafter. Dynamic contrast enhanced MRI, dynamic susceptibility contrast MRI, and vessel architecture imaging were used to assess vascular effects. Resting state MRI was used to assess brain connectivity. Best RANO criteria responses were: 1 complete response, 1 partial response, 4 stable diseases, and 4 progressive disease (PD). Two patients were taken off study for toxicity and 8 patients were taken off study for PD. Median progression-free survival was 2.3 months and median overall survival was 8.1 months. Baseline abnormal tumor vascular permeability, blood flow, tissue oxygenation and plasma sVEGFR2 significantly decreased and plasma PlGF and VEGF increased after treatment, suggesting an anti-angiogenic effect of tivozanib. However, there were no clear structural changes in vasculature as vessel caliber and enhancing tumor volume did not significantly change. Despite functional changes in tumor vasculature, tivozanib had limited anti-tumor activity, highlighting the limitations of anti-VEGF monotherapy. Future studies in glioblastoma should leverage the anti-vascular activity of agents targeting VEGF to enhance the activity of other therapies.

Keywords

Glioblastoma Anti-angiogenesis MRI Progression-free survival Overall survival Tivozanib 

Notes

Acknowledgements

This study was approved and funded by the National Comprehensive Cancer Network (NCCN) Oncology Research Program from general research support provided by AVEO Pharmaceuticals, Inc. (to E. G.). The research of R. K. J. and D. G. D. is funded by National Cancer Institute Grant P01CA80124 and the National Foundation for Cancer Research. Funding was also provided by U24CA180918 and U01CA154601 (to J. K. C.) and S10RR023043 and P41RR14075.

Compliance with ethical standards

Conflict of interest

R. K. J. owns equity in Enlight, Ophthotech, SynDevRx, and XTuit and serves on the Board of Directors of XTuit and the Boards of Trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund, and Tekla World Healthcare Fund, and received grants from MedImmune and Roche. D. G. D. received grants from Merrimack, Bayer and HealthCare Pharmaceuticals.

Supplementary material

11060_2016_2332_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 KB)
11060_2016_2332_MOESM2_ESM.docx (49 kb)
Supplementary material 2 (DOCX 49 KB)
11060_2016_2332_MOESM3_ESM.docx (25 kb)
Supplementary material 3 (DOCX 24 KB)

References

  1. 1.
    Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:409–416CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844. doi: 10.1038/362841a0 CrossRefPubMedGoogle Scholar
  3. 3.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi: 10.1038/nature10144 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347. doi: 10.1002/glia.440150313 CrossRefPubMedGoogle Scholar
  5. 5.
    Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, Eichler AF, Drappatz J, Hochberg FH, Benner T, Louis DN, Cohen KS, Chea H, Exarhopoulos A, Loeffler JS, Moses MA, Ivy P, Sorensen AG, Wen PY, Jain RK (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823. doi: 10.1200/JCO.2009.26.3988 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, Batchelor TT, Jain RK (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33: 1197–1213. doi: 10.1200/JCO.2014.55.9575 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740. doi: 10.1200/JCO.2008.19.8721 CrossRefPubMedGoogle Scholar
  8. 8.
    Oldenhuis CN, Loos WJ, Esteves B, van Doorn L, Cotreau MM, Strahs AL, den Hollander MW, Gietema JA, de Vries EG, Eskens FA (2015) A phase Ib study of the VEGF receptor tyrosine kinase inhibitor tivozanib and modified FOLFOX-6 in patients with advanced gastrointestinal malignancies. Clin Colorectal Cancer 14(18–24):e11. doi: 10.1016/j.clcc.2014.12.001 Google Scholar
  9. 9.
    Mayer EL, Scheulen ME, Beckman J, Richly H, Duarte A, Cotreau MM, Strahs AL, Agarwal S, Steelman L, Winer EP, Dickler MN (2013) A Phase I dose-escalation study of the VEGFR inhibitor tivozanib hydrochloride with weekly paclitaxel in metastatic breast cancer. Breast Cancer Res Treat 140:331–339. doi: 10.1007/s10549-013-2632-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Nosov DA, Esteves B, Lipatov ON, Lyulko AA, Anischenko AA, Chacko RT, Doval DC, Strahs A, Slichenmyer WJ, Bhargava P (2012) Antitumor activity and safety of tivozanib (AV-951) in a phase II randomized discontinuation trial in patients with renal cell carcinoma. J Clin Oncol 30:1678–1685. doi: 10.1200/JCO.2011.35.3524 CrossRefPubMedGoogle Scholar
  11. 11.
    Eskens FA, de Jonge MJ, Bhargava P, Isoe T, Cotreau MM, Esteves B, Hayashi K, Burger H, Thomeer M, van Doorn L, Verweij J (2011) Biologic and clinical activity of tivozanib (AV-951, KRN-951), a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4-week-on, 2-week-off schedule in patients with advanced solid tumors. Clin Cancer Res 17:7156–7163. doi: 10.1158/1078-0432.CCR-11-0411 CrossRefPubMedGoogle Scholar
  12. 12.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. doi: 10.1200/JCO.2009.26.3541 CrossRefPubMedGoogle Scholar
  13. 13.
    Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpace L, Mikkelsen T, Jain R, Wintermark M, Jilwan M, Raghavan P, Huang E, Clifford RJ, Mongkolwat P, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, Saltz J, Flanders A, Brat DJ (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267: 560–569. doi: 10.1148/radiol.13120118 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–5300. doi: 10.1158/0008-5472.CAN-09-0814 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, Wen PY, Sorensen AG, Jain RK (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110:19059–19064. doi: 10.1073/pnas.1318022110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhu AX, Sahani DV, Duda DG, di Tomaso E, Ancukiewicz M, Catalano OA, Sindhwani V, Blaszkowsky LS, Yoon SS, Lahdenranta J, Bhargava P, Meyerhardt J, Clark JW, Kwak EL, Hezel AF, Miksad R, Abrams TA, Enzinger PC, Fuchs CS, Ryan DP, Jain RK (2009) Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 27:3027–3035. doi: 10.1200/JCO.2008.20.9908 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Duda DG, Willett CG, Ancukiewicz M, di Tomaso E, Shah M, Czito BG, Bentley R, Poleski M, Lauwers GY, Carroll M, Tyler D, Mantyh C, Shellito P, Clark JW, Jain RK (2010) Plasma soluble VEGFR-1 Is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer. Oncologist 15:577–583CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJ, Rosen BR, Sorensen AG, Jain RK (2014) Vessel caliber–a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 11:566–584. doi: 10.1038/nrclinonc.2014.126 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, Mason W, Xu J, Liu Q, van den Bent M (2010) A phase III randomized study comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, with lomustine alone in recurrent glioblastoma patients. Ann Oncol 21(Suppl 8):LBA7Google Scholar
  21. 21.
    Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, Boerman D, de Vos FY, Dinjens WN, Enting RH, Taphoorn MJ, van den Berkmortel FW, Jansen RL, Brandsma D, Bromberg JE, van Heuvel I, Vernhout RM, van der Holt B, van den Bent MJ (2014) Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncology 15:943–953. doi: 10.1016/S1470-2045(14)70314-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, Batchelor TT, di Tomaso E, Duda DG, Munn LL, Fukumura D, Sorensen AG, Jain RK (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27:2542–2552. doi: 10.1200/JCO.2008.19.9356 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15:683–695. doi: 10.1038/nrn3801 CrossRefPubMedGoogle Scholar
  24. 24.
    Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917PubMedGoogle Scholar
  25. 25.
    Derks J, Reijneveld JC, Douw L (2014) Neural network alterations underlie cognitive deficits in brain tumor patients. Curr Opin Oncol 26:627–633. doi: 10.1097/CCO.0000000000000126 CrossRefPubMedGoogle Scholar
  26. 26.
    Douw L, de Groot M, van Dellen E, Aronica E, Heimans JJ, Klein M, Stam CJ, Reijneveld JC, Hillebrand A (2013) Local MEG networks: the missing link between protein expression and epilepsy in glioma patients? Neuroimage 75:195–203. doi: 10.1016/j.neuroimage.2013.02.067 CrossRefPubMedGoogle Scholar
  27. 27.
    Harris RJ, Bookheimer SY, Cloughesy TF, Kim HJ, Pope WB, Lai A, Nghiemphu PL, Liau LM, Ellingson BM (2014) Altered functional connectivity of the default mode network in diffuse gliomas measured with pseudo-resting state fMRI. J Neurooncol 116:373–379. doi: 10.1007/s11060-013-1304-2 CrossRefPubMedGoogle Scholar
  28. 28.
    Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Mag Reson Med 66:735–745. doi: 10.1002/mrm.22861 CrossRefGoogle Scholar
  29. 29.
    Emblem KE, Mouridsen K, Bjornerud A, Farrar CT, Jennings D, Borra RJH, Wen PY, Ivy P, Batchelor TT, Rosen BR, Jain RK, Sorensen AG (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19:1178–1183. doi: 10.1038/nm.3289. http://www.nature.com/nm/journal/v19/n9/abs/nm.3289.html-supplementary-information
  30. 30.
    Ou Y, Davatzikos C (2009) DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Inf Process Med Imaging 21:50–62CrossRefPubMedGoogle Scholar
  31. 31.
    Ou Y, Akbari H, Bilello M, Da X, Davatzikos C (2014) Comparative evaluation of registration algorithms in different brain databases with varying difficulty: results and insights. IEEE Trans Med Imaging 33:2039–2065. doi: 10.1109/TMI.2014.2330355 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051 CrossRefPubMedGoogle Scholar
  33. 33.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. doi: 10.1006/nimg.2001.0978 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jayashree Kalpathy-Cramer
    • 1
  • Vyshak Chandra
    • 1
  • Xiao Da
    • 1
  • Yangming Ou
    • 1
  • Kyrre E. Emblem
    • 1
    • 3
  • Alona Muzikansky
    • 2
  • Xuezhu Cai
    • 1
  • Linda Douw
    • 1
    • 4
  • John G. Evans
    • 1
  • Jorg Dietrich
    • 2
  • Andrew S. Chi
    • 6
  • Patrick Y. Wen
    • 5
  • Stephen Stufflebeam
    • 1
  • Bruce Rosen
    • 1
  • Dan G. Duda
    • 2
  • Rakesh K. Jain
    • 2
  • Tracy T. Batchelor
    • 2
  • Elizabeth R. Gerstner
    • 2
  1. 1.Martinos Center for Biomedical ImagingCharlestownUSA
  2. 2.Stephen E. and Catherine Pappas Center for Neuro-OncologyMassachusetts General Hospital Cancer CenterBostonUSA
  3. 3.The Intervention CentreOslo University HospitalOsloNorway
  4. 4.Department of Anatomy and Neuroscience/VUmc CCA Brain Tumor Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
  5. 5.Dana-Farber Cancer InstituteBostonUSA
  6. 6.Laura and Isaac Perlmutter Cancer CenterNYU Langone Medical CenterNew YorkUSA

Personalised recommendations